Skip to main content

Advertisement

Log in

Antioxidant, anti-inflammatory, and anti-apoptotic effects of crocin against doxorubicin-induced myocardial toxicity in rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX) is a well-known chemotherapeutic drug for most malignancies including breast cancer and leukemia whilst the usage of DOX is limited owing to its cardiotoxicity. In the present study, we aimed to investigate the effects of crocin on doxorubicin-induced cardiotoxicity in rats. Forty rats were randomly divided into four groups: (a) control [received normal saline as a dose of 1 ml/kg by intraperitoneal injection (ip) for 15 days], (b) crocin (received crocin as a dose of 40 mg/kg/24h by ip for 15 days), (c) DOX (received DOX as a dose of 2 mg/kg/48h by ip in six injection, cumulative dose 12 mg/kg), and (d) DOX+crocin (received DOX as a dose of 2 mg/kg/48h by ip in six injection, and crocin as a dose of 40 mg/kg/24h i.p for 15 days). As compared to the controls, the results showed that DOX administration caused significant increases in lipid indices [triglyseride (TG), low-dencity lipoproteins (LDL) (p<0.001), and very low-dencity lipoproteins (VLDL) (p<0.005)], oxidative stress parameters [malondialdehyde (MDA) and total oxidant status (TOS) (p<0.001)] and cardiac markers [creatine kinase-muscle/brain (CK-MB) and cardiac troponin I (cTnI) (p<0.001)]. Besides, significant decreases in antioxidant defense systems [glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and total antioxidant status (TAS) (p<0.001)] were observed. The present study also demonstrated that co-administration of crocin with DOX significantly ameliorated the lipid profile (p<0.005), cardiac markers (p<0.005), and oxidative stress indices (p<0.001) as compared to DOX group. Histopathologically, significant increase in the mean histopathological damage score (MHDS) was found in the DOX group as compared to the controls (p<0.001). In contrast, the administration of crocin with DOX alleviated MHDS in myocardium (p<0.001). Taken together, our results reveal that crocin might be a cardioprotective agent in DOX-treated patients for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abbate A, Bussani R, Amin MS, Vetrovec GW, Baldi A (2006) Acute myocardial infarction and heart failure: role of apoptosis. Int J Biochem Cell Biol 38:1834–1840

    Article  CAS  Google Scholar 

  • Abd El-Aziz TA, Mohamed RH, Pasha HF, Abdel-Aziz HR (2012) Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin Exp Med 12:233–240

    Article  CAS  Google Scholar 

  • Abdel-Daim MM, Khalifa HA, Ahmed AA (2017) Allicin ameliorates doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Cancer Chemother Pharmacol 80:745–753

    Article  CAS  Google Scholar 

  • Abushouk AI, Ismail A, Salem AMA, Afifi AM, Abdel-Daim MM (2017) Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 90:935–946

    Article  CAS  Google Scholar 

  • Abushouk AI, Salem AMA, Saad A, Afifi AM, Afify AY, Afify H, Salem HS, Ghanem E, Abdel-Daim MM (2019) Mesenchymal stem cell therapy for doxorubicin-induced cardiomyopathy: potential mechanisms, governing factors, and implications of the heart stem cell debate. Front Pharmacol 10:635

    Article  CAS  Google Scholar 

  • Aebi H (1974) Catalase: In: Bergmeyer. Methods in enzymatic analysis Academic Press Inc., New York, pp 673–686

    Google Scholar 

  • Ahmadian-Fard-Fini S, Salavati-Niasari M, Ghanbari D (2018) Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim Acta A Mol Biomol Spectrosc 203:481–493

    Article  CAS  Google Scholar 

  • Ahmed HH, Mannaa F, Elmegeed GA, Doss SH (2005) Cardioprotective activity of melatonin and its novel synthesized derivatives on doxorubicin-induced cardiotoxicity. Bioorg Med Chem 13:1847–1857

    Article  CAS  Google Scholar 

  • Alavizadeh SH, Hosseinzadeh H (2014) Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 64:65–80

    Article  CAS  Google Scholar 

  • Arafa MH, Mohammad NS, Atteia HH, Abd-Elaziz HR (2014) Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. J Physiol Biochem 70:701–711

    Article  CAS  Google Scholar 

  • Ascensão A, Magalhães J, Soares JM, Ferreira R, Neuparth MJ, Marques F, Oliveira PJ, Duarte JA (2005) Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. Am J Phys Heart Circ Phys 289:H722–H731

    Google Scholar 

  • Assimopoulou A, Sinakos Z, Papageorgiou V (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 19:997–1000

    Article  CAS  Google Scholar 

  • Babaei H, Razmaraii N, Assadnassab G, Mohajjel Nayebi A, Azarmi Y, Mohammadnejad D, Azami A (2020) Ultrastructural and echocardiographic assessment of chronic doxorubicin-induced cardiotoxicity in rats. Archives of Razi Institute 75:55–62

    CAS  Google Scholar 

  • Berthiaume J, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23:15–25

    Article  CAS  Google Scholar 

  • Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, Civelli M, Lamantia G, Colombo N, Curigliano G (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131:1981–1988

    Article  CAS  Google Scholar 

  • Chu X, Zhang Y, Xue Y, Li Z, Shi J, Wang H, Chu L (2020) Crocin protects against cardiotoxicity induced by doxorubicin through TLR-2/NF-κB signal pathway in vivo and vitro. Int Immunopharmacol 84:106548

    Article  CAS  Google Scholar 

  • Chularojmontri L, Gerdprasert O, Wattanapitayakul SK (2013) Pummelo protects doxorubicin-induced cardiac cell death by reducing oxidative stress, modifying glutathione transferase expression, and preventing cellular senescence. Evid Based Complement Alternat Med 2013:1–9

    Google Scholar 

  • Dash SK, Chattopadhyay S, Ghosh T, Dash SS, Tripathy S, Das B, Bag BG, Das D, Roy S (2015) Self-assembled betulinic acid protects doxorubicin induced apoptosis followed by reduction of ROS–TNF-α–caspase-3 activity. Biomed Pharmacother 72:144–157

    Article  CAS  Google Scholar 

  • De Beer EL, Bottone AE, Voest EE (2001) Doxorubicin and mechanical performance of cardiac trabeculae after acute and chronic treatment: a review. Eur J Pharmacol 415:1–11

    Article  Google Scholar 

  • Deepa P, Varalakshmi P (2005) Biochemical evaluation of the inflammatory changes in cardiac, hepatic and renal tissues of adriamycin-administered rats and the modulatory role of exogenous heparin-derivative treatment. Chem Biol Interact 156:93–100

    Article  CAS  Google Scholar 

  • Deng M, Li D, Zhang Y, Zhou G, Liu W, Cao Y, Zhang W (2018) Protective effect of crocin on ultraviolet B-induced dermal fibroblast photoaging. Mol Med Rep 18:1439–1446

    CAS  Google Scholar 

  • Durdagi G, Pehlivan DY, Oyar EO, Bahceci SA, Ozbek M (2021) Effects of melatonin and adrenomedullin in reducing the cardiotoxic effects of doxorubicin in rats. Cardiovasc Toxicol 21: 354-364

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Elsherbiny NM, Salama MF, Said E, El-Sherbiny M, Al-Gayyar MM (2016) Crocin protects against doxorubicin-induced myocardial toxicity in rats through down-regulation of inflammatory and apoptic pathways. Chem Biol Interact 247:39–48

    Article  CAS  Google Scholar 

  • Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  CAS  Google Scholar 

  • Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  Google Scholar 

  • Farkhondeh T, Samarghandian S (2014) The effect of saffron (Crocus sativus L.) and its ingredients on the management of diabetes mellitus and dislipidemia. Afr J Pharm Pharmacol 8:541–549

    Article  Google Scholar 

  • Fernández J-A (2006) Anticancer properties of saffron, Crocus sativus Linn. Advances in phytomedicine 2:313–330

    Article  Google Scholar 

  • Festuccia C, Mancini A, Gravina GL, Scarsella L, Llorens S, Alonso GL, Tatone C, Di Cesare E, Jannini EA, Lenzi A (2014) Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed Res Int 2014:1–12

    Article  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    Article  CAS  Google Scholar 

  • Goudarzi M, Fatemi I, Siahpoosh A, Sezavar SH, Mansouri E, Mehrzadi S (2018) Protective effect of ellagic acid against sodium arsenite-induced cardio-and hematotoxicity in rats. Cardiovasc Toxicol 18:337–345

    Article  CAS  Google Scholar 

  • Hahn VS, Lenihan DJ, Ky B (2014) Cancer therapy–induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc 3:e000665

    Article  Google Scholar 

  • Hariri AT, Moallem SA, Mahmoudi M, Memar B, Hosseinzadeh H (2010) Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem Toxicol 48:2803–2808

    Article  CAS  Google Scholar 

  • Haybar H, Goudarzi M, Mehrzadi S, Aminzadeh A, Khodayar MJ, Kalantar M, Fatemi I (2019) Effect of gemfibrozil on cardiotoxicity induced by doxorubicin in male experimental rats. Biomed Pharmacother 109:530–535

    Article  CAS  Google Scholar 

  • Hong Y-J, Yang K-S (2013) Anti-inflammatory activities of crocetin derivatives from processed Gardenia jasminoides. Arch Pharm Res 36:933–940

    Article  CAS  Google Scholar 

  • Hong YM, Kim HS, Yoon H-R (2002) Serum lipid and fatty acid profiles in adriamycin-treated rats after administration of L-carnitine. Pediatr Res 51:249–255

    Article  CAS  Google Scholar 

  • Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A (2005) Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci 8:387–393

    CAS  Google Scholar 

  • Iliskovic N, Singal PK (1997) Lipid lowering: an important factor in preventing adriamycin-induced heart failure. Am J Pathol 150:727

    CAS  Google Scholar 

  • Imam F, Al-Harbi NO, Al-Harbi MM, Ansari MA, Al-Asmari AF, Ansari MN, Al-Anazi WA, Bahashwan S, Almutairi MM, Alshammari M (2018) Apremilast prevent doxorubicin-induced apoptosis and inflammation in heart through inhibition of oxidative stress mediated activation of NF-κB signaling pathways. Pharmacol Rep 70:993–1000

    Article  CAS  Google Scholar 

  • Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorev E, Kotamraju S (2002) Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 234:119–124

    Article  Google Scholar 

  • Kang YJ, Chen Y, Yu A, Voss-McCowan M, Epstein PN (1997) Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. J Clin Invest 100:1501–1506

    Article  CAS  Google Scholar 

  • Konoshima T, Takasaki M, Tokuda H, Morimoto S, Tanaka H, Kawata E, Xuan L, Saito H, Sugiura M, Molnar J (1998) Crocin and crocetin derivatives inhibit skin tumour promotion in mice. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 12:400–404

    Article  CAS  Google Scholar 

  • Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, Xie M, Jiang N, May H, Kyrychenko V (2016) Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation 133:1668–1687

    Article  CAS  Google Scholar 

  • Li J, H-t L, Cao L, Mi Y-N, Li S, Cao Y-X (2018) Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. Int Immunopharmacol 55:120–127

    Article  CAS  Google Scholar 

  • Liang Y, Zheng B, Li J, Shi J, Chu L, Han X, Chu X, Zhang X, Zhang J (2020) Crocin ameliorates arsenic trioxide-induced cardiotoxicity via Keap1-Nrf2/HO-1 pathway: reducing oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 131:110713

    Article  CAS  Google Scholar 

  • Lipshultz SE (2006) Exposure to anthracyclines during childhood causes cardiac injury, Seminars in oncology. Elsevier, pp 8–14

    Google Scholar 

  • Ma T, Kandhare AD, Mukherjee-Kandhare AA, Bodhankar SL (2019) Fisetin, a plant flavonoid ameliorates doxorubicin-induced cardiotoxicity in experimental rats: the decisive role of caspase-3, COX-II, cTn-I, iNOs and TNF-α. Mol Biol Rep 46:105–118

    Article  CAS  Google Scholar 

  • Migrino RQ, Aggarwal D, Konorev E, Brahmbhatt T, Bright M, Kalyanaraman B (2008) Early detection of doxorubicin cardiomyopathy using two-dimensional strain echocardiography. Ultrasound Med Biol 34:208–214

    Article  Google Scholar 

  • Mousavi SH, Tayarani N, Parsaee H (2010) Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells. Cell Mol Neurobiol 30:185–191

    Article  CAS  Google Scholar 

  • Müller I, Niethammer D, Bruchelt G (1998) Anthracycline-derived chemotherapeutics in apoptosis and free radical cytotoxicity. Int J Mol Med 1:491–495

    Google Scholar 

  • Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52:1213–1225

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Oliveira P, Santos M, Wallace K (2006) Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochem Mosc 71:194–199

    Article  CAS  Google Scholar 

  • Oner Z, Altınoz E, Elbe H, Ekinci N (2019) The protective and therapeutic effects of linalool against doxorubicin-induced cardiotoxicity in Wistar albino rats. Hum Exp Toxicol 38:803–813

    Article  CAS  Google Scholar 

  • Pecoraro M, Del Pizzo M, Marzocco S, Sorrentino R, Ciccarelli M, Iaccarino G, Pinto A, Popolo A (2016) Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicol Appl Pharmacol 293:44–52

    Article  CAS  Google Scholar 

  • Pham TQ, Cormier F, Farnworth E, Tong VH, Van Calsteren M-R (2000) Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J Agric Food Chem 48:1455–1461

    Article  CAS  Google Scholar 

  • Qi W, Boliang W, Xiaoxi T, Guoqiang F, Jianbo X, Gang W (2020) Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother 122:109547

    Article  Google Scholar 

  • Rahaiee S, Moini S, Hashemi M, Shojaosadati SA (2015) Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): a review. J Food Sci Technol 52:1881–1888

    Article  CAS  Google Scholar 

  • Razavi BM, Hosseinzadeh H, Movassaghi AR, Imenshahidi M, Abnous K (2013) Protective effect of crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chem Biol Interact 203:547–555

    Article  CAS  Google Scholar 

  • Razmaraii N, Babaei H, Nayebi AM, Asadnasab G, Helan JA, Azarmi Y (2016a) Cardioprotective effect of phenytoin on doxorubicin-induced cardiac toxicity in a rat model. J Cardiovasc Pharmacol 67:237–245

    Article  CAS  Google Scholar 

  • Razmaraii N, Babaei H, Nayebi AM, Assadnassab G, Helan JA, Azarmi Y (2016b) Cardioprotective effect of grape seed extract on chronic doxorubicin-induced cardiac toxicity in Wistar rats. Advanced pharmaceutical bulletin 6:423–433

    Article  CAS  Google Scholar 

  • Razmaraii N, Babaei H, Nayebi AM, Assadnassab G, Helan JA, Azarmi Y (2016c) Crocin treatment prevents doxorubicin-induced cardiotoxicity in rats. Life Sci 157:145–151

    Article  CAS  Google Scholar 

  • Sadek KM, Mahmoud SF, Zeweil MF, Abouzed TK (2021) Proanthocyanidin alleviates doxorubicin-induced cardiac injury by inhibiting NF-kB pathway and modulating oxidative stress, cell cycle, and fibrogenesis. J Biochem Mol Toxicol 35:e22716

  • Salavati-Niasari M, Fereshteh Z, Davar F (2009) Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28:126–130

    Article  CAS  Google Scholar 

  • Salehabadi A, Salavati-Niasari M, Ghiyasiyan-Arani M (2018) Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. J Alloys Compd 745:789–797

    Article  CAS  Google Scholar 

  • Shaker RA, Abboud SH, Assad HC, Hadi N (2018) Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacol Toxicol 19:1–10

    Article  Google Scholar 

  • Shen X-C, Qian Z-Y (2006) Effects of crocetin on antioxidant enzymatic activities in cardiac hypertrophy induced by norepinephrine in rats. Die Pharmazie-An International Journal of Pharmaceutical Sciences 61:348–352

    CAS  Google Scholar 

  • Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S (2019) Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 307:41–48

    Article  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    Article  CAS  Google Scholar 

  • Sun X, Zhou Z, Kang YJ (2001) Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart. Cancer Res 61:3382–3387

    CAS  Google Scholar 

  • Sun Z, Yan B, Yu WY, Yao X, Ma X, Sheng G, Ma Q (2016) Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a. Experimental and therapeutic medicine 12:1879–1884

    Article  CAS  Google Scholar 

  • Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer: Interdisciplinary International Journal of the American Cancer Society 97:2869–2879

    Article  CAS  Google Scholar 

  • Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy: from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49:330–352

    Article  CAS  Google Scholar 

  • Takemura G, Kanoh M, Minatoguchi S, Fujiwara H (2013) Cardiomyocyte apoptosis in the failing heart—a critical review from definition and classification of cell death. Int J Cardiol 167:2373–2386

    Article  Google Scholar 

  • Tarr A, Stoebe S, Tuennemann J, Baka Z, Pfeiffer D, Varga A, Hagendorff A (2015) Early detection of cardiotoxicity by 2D and 3D deformation imaging in patients receiving chemotherapy. Echo research and practice 2:81–88

    Article  Google Scholar 

  • Tavakkol-Afshari J, Brook A, Mousavi SH (2008) Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem Toxicol 46:3443–3447

    Article  CAS  Google Scholar 

  • Thushara R, Hemshekhar M, Santhosh MS, Jnaneshwari S, Nayaka S, Naveen S, Kemparaju K, Girish K (2013) Crocin, a dietary additive protects platelets from oxidative stress-induced apoptosis and inhibits platelet aggregation. Mol Cell Biochem 373:73–83

    Article  CAS  Google Scholar 

  • Wu Y, Pan R-R, Geng P (2010) The effect of Crocin against hypoxia damage of myocardial cell and its mechanism. Zhongguo ying yong sheng li xue za zhi= Zhongguo yingyong shenglixue zazhi= Chinese journal of applied physiology 26:453–457

    Google Scholar 

  • Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GY, Lyon AR (2016) 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37:2768–2801

    Article  Google Scholar 

  • Zhou S, Palmeira CM, Wallace KB (2001a) Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 121:151–157

    Article  CAS  Google Scholar 

  • Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB (2001b) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771–777

    CAS  Google Scholar 

Download references

Funding

The research was supported by Karabuk University Scientifict Research Fund (TYL-2020-2298).

Author information

Authors and Affiliations

Authors

Contributions

Sara Asaad ABDULKAREEM ALJUMAILY and Yasemin Bicer studied biochemical analysis, Mehmet Demir designed the study and collected the tissues, Hulya Elbe and Gurkan Yigitturk performed the histological examination of the hearth tissues, and Eyup Altınoz designed the study and calculated the biochemical results, and was a major contributor in writing the manuscript.

Corresponding author

Correspondence to Eyup Altinoz.

Ethics declarations

Ethical approval and and consent to participate

The study was approved by the Experimental Animals Ethics Committee of Zonguldak Bulent Ecevit University, Faculty of Medicine (Protocol No: 2020/04).

Consent to publish

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkareem Aljumaily, .A., Demir, M., Elbe, H. et al. Antioxidant, anti-inflammatory, and anti-apoptotic effects of crocin against doxorubicin-induced myocardial toxicity in rats. Environ Sci Pollut Res 28, 65802–65813 (2021). https://doi.org/10.1007/s11356-021-15409-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15409-w

Keywords

Navigation