Skip to main content

Advertisement

Log in

Using High Pressure Homogenization (HPH) to Change the Physical Properties of Cashew Apple Juice

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The High Pressure Homogenization (HPH) process is a non-thermal technology that can be used to change the structure of fluid foods. The main transformations are related to the rheology, particle size distribution (PSD) and pulp sedimentation, and the way that each vegetable matrix responds to the HPH process is unique and hard to predict. In the present study, the effect of HPH (up to 150 MPa) was evaluated for cashew apple juice (10 °Brix) in relation to the rheological properties, PSD, optical microscopy and pulp sedimentation during storage. The HPH process decreased the juice consistency coefficient and yield stress (up to 50 % and 30 % of the original values, respectively). The flow behaviour index increased to nearly twice its original value, and the juice thixotropy was slightly reduced. HPH also decreased the mean particle size and changed the PSD. It had no impact on the final sedimentation index, but decreased the velocity of sedimentation. The microstructure could be observed by optical microscopy, which also showed the decrease in particle size. All the parameters were modelled as a function of the homogenization pressure, which could be useful for a better understanding and as an aid in future studies. The results showed that the HPH process could be used to decrease the cashew apple pulp sedimentation velocity, which could lead to the use of a reduced amount of additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\( \overset{\cdot }{\gamma } \) :

shear rate [s−1]

η:

viscosity [Pa · s]

ηa :

apparent viscosity (= σ/ \( \overset{\cdot }{\gamma } \)) [Pa · s]

σ:

shear stress [Pa]

σ0 :

yield stress, Herschel-Bulkley model (Eq. 4) [Pa]

σe :

equilibrium stress in the Figoni-Shoemaker model (Eq. 3) [Pa]

σi :

initial stress in the Figoni-Shoemaker model (Eq. 3) [Pa]

ζ:

zeta potential [mV]

d:

particle diameter [μm]

D[4,3]:

mean particle volume-based diameter (Eq. 1) [μm]

D[3,2]:

mean particle area-based diameter (Eq. 2) [μm]

IS:

sedimentation index (Eq. 5) [−]

ISe :

sedimentation index at equilibrium (infinite time) (Eq. 7) [−]

ISi :

initial value of sedimentation index (time 0) (Eq. 7) [−]

k:

consistency coefficient, Herschel-Bulkley model (Eq. 4) [Pa · sn]

kB :

Boltzman constant [= 1.38 · 10−23 N · m · K−1]

kFS :

kinetic parameter in the Figoni-Shoemaker model (Eq. 3) [s−1]

kS :

kinetic parameter in the sedimentation index model (Eq. 7) [day−1]

n:

flow behaviour index, Herschel-Bulkley model (Eq. 4) [−]

Pe:

Peclet number (Eq. 6) [−]

PH :

homogenization pressure [MPa]

\( {\overline{r}}_{particle} \) :

mean suspended particle radius [m]

t:

time (Eq. 3) [s]

t:

time (Eq. 7) [days]

T:

absolute temperature [K]

References

  1. R.B. Assunção, A.Z. Mercadante, Food Chem. 81, 495–502 (2003)

    Article  Google Scholar 

  2. R.B. Assunção, A.Z. Mercadante, J.Food Comp. Ana. 16, 647–657 (2003)

    Article  Google Scholar 

  3. K.D.P. Silva, F.P. Collares, J.R.D. Finzer, Food Chem. 70, 247–250 (2000)

    Article  Google Scholar 

  4. A.A.L. Tribst, P.E.D. Augusto, M. Cristianini, Int. J. Food Sci. Technol. 47, 716–722 (2012)

    Article  CAS  Google Scholar 

  5. B. Wang, D. Li, L.J. Wang, Y.H. Liu, B. Adhikari, J. Food Eng. 113, 61–68 (2012)

    Article  CAS  Google Scholar 

  6. T. Wang, X. Sun, Z. Zhou, G. Chen, Food Res. Int. 48, 742–747 (2012)

    Article  Google Scholar 

  7. X. Dong, M. Zhao, B. Yang, X. Yang, J. Shi, Y. Jiang, J. Food Process Eng. 34, 2191–2204 (2011)

    Article  CAS  Google Scholar 

  8. E. Bayod, E. Tornberg, Food Res. Int. 44, 755–764 (2011)

    Article  CAS  Google Scholar 

  9. H. Bengtsson, E. Tornberg, J. Texture Stud. 42(4), 268–280 (2011)

    Article  Google Scholar 

  10. P. Lopez-Sanchez, J. Nijsse, H.C.G. Blonk, L. Bialek, S. Schumm, M. Langton, J. Sci Food Agric. 91, 207–217 (2011)

    Article  CAS  Google Scholar 

  11. P. Lopez-Sanchez, C. Svelander, L. Bialek, S. Schummm, M. Langton, J. Food Sci. 76(1), E130–E140 (2011)

    Article  CAS  Google Scholar 

  12. E. Sentandreu, M.C. Gurrea, N. Betoret, J.L. Navarro, J. Food Eng. 105, 241–245 (2011)

    Article  CAS  Google Scholar 

  13. P.E.D. Augusto, A. Ibarz, M. Cristianini, J. Food Eng. 111, 570–579 (2012)

    Article  Google Scholar 

  14. J. Floury, J. Belletre, J. Legrand, A. Desrumaux, Chem. Eng. Sci. 59, 843–853 (2004)

    Article  CAS  Google Scholar 

  15. C.R.G. Pinho, M.A. Franchi, P.E.D. Augusto, M. Cristianini, Braz. J. Food Technol. 14, 232–240 (2011)

    Article  Google Scholar 

  16. F. Innings, C. Trägårdh, Exp. Therm. Fluid Sci. 32, 345–354 (2007)

    Article  CAS  Google Scholar 

  17. E. Dumay, D. Chevalier-Lucia, L. Picart-Palmade, A. Benzaria, A. Gràcia-Julià, C. Blayo, Trends Food Sci. Technol. 31, 13–26 (2013)

    Article  CAS  Google Scholar 

  18. M.A. Rao, in Engineering Properties of Foods, 3rd edn ed. By M.A. Rao, S.S.H. Rizvi, A.K. Datta, (CRC Press, Boca Raton: 2005)

  19. V.M. Silva, A.C.K. Sato, G. Barbosa, G. Dacanal, H.J. Ciro-Velásquez, R.L. Cunha, Int. J. Food Sci. Technol. 45, 2127–2133 (2010)

    Article  CAS  Google Scholar 

  20. M.T.K. Kubo, P.E.D. Augusto, M. Cristianini, Food Res. Int. 51(1), 170–179 (2013)

    Article  CAS  Google Scholar 

  21. D.C.P. Campos, A.S. Santos, D.B. Wolkoff, V.M. Matta, L.M.C. Cabral, S. Couri, Desalin. 148(6), 1–65 (2002)

    Google Scholar 

  22. P.M. Azoubel, D.C. Cipriani, A.A. El-Aouar, G.C. Antonio, F.E.X. Murr, J. Food Eng. 66, 413–417 (2005)

    Article  Google Scholar 

  23. C.C. Queiroz, F.F. Moreira, F.C. Lavinas, M.L.M. Lopes, E. Fialho, V.L. Valente-Mesquita, High Press. Res. 30(4), 507–513 (2010)

    Article  CAS  Google Scholar 

  24. C.C. Queiroz, A.J.R. Silva, M.L.M. Lopes, E. Fialho, V.L. Valente-Mesquita, Food Chem. 125, 128–132 (2011)

    Article  CAS  Google Scholar 

  25. R.V. Tonon, D. Alexandre, M.D. Hubinger, R.L. Cunha, J. Food Eng. 92, 425–431 (2009)

    Article  CAS  Google Scholar 

  26. L.H. Fasolin, R.L. Cunha, Ciên. Tecnol. Alim. 32(3), 558–567 (2012)

    Article  Google Scholar 

  27. K.R.N. Moelants, R. Cardinaels, R.P. Jolie, T.A.J. Verrijssen, S. Van Buggenhout, L.M. Zumalacarregui, A.M. Van Loey, P. Moldenaers, M.E. Hendrickx, Food Bioprocess Technol. 6(5), 1127–1143 (2013)

    Article  CAS  Google Scholar 

  28. P.I. Figoni, C.F. Shoemaker, J. Texture Stud. 14, 431–442 (1983)

    Article  Google Scholar 

  29. B. Mert, J. Food Eng. 109(3), 579–587 (2012)

    Article  CAS  Google Scholar 

  30. D.B. Genovese, J.E. Lozano, M.A. Rao, J. Food Sci. 72(2), R11–R20 (2007)

    Article  CAS  Google Scholar 

  31. S. Croak, M. Corredig, Food Hydrocol. 20, 961–965 (2006)

    Article  CAS  Google Scholar 

  32. C. Servais, R. Jones, I. Roberts, J. Food Eng. 51, 201–208 (2002)

    Article  Google Scholar 

  33. P. Fischer, M. Pollard, P. Erni, I. Marti, S. Padar, C. R. Phys. 10, 740–750 (2009)

    Article  CAS  Google Scholar 

  34. D.B. Genovese, J.E. Lozano, Food Hydrocoll. 20, 467–773 (2006)

    Article  Google Scholar 

  35. P.E.D. Augusto, A. Ibarz, M. Cristianini, J. Food Eng. 111, 474–477 (2012)

    Article  Google Scholar 

  36. E.P.H.M. Schijvens, T. Van Vliet, C. Van Dijk, J. Texture Stud. 29, 123–143 (1998)

    Article  Google Scholar 

  37. S.C. Tsai, K. Zammouri, J. Rheol. 32(7), 737–750 (1988)

    Article  CAS  Google Scholar 

  38. A.J. Poslinski, M.E. Ryan, R.K. Gupta, S.G. Shehadri, F.J. Frechette, J. Rheol. 32, 703–735 (1988)

    Article  CAS  Google Scholar 

  39. E. Bayod, E.P. Willers, E. Tornberg, Food Sci. Technol. 41(7), 1289–1300 (2008)

    CAS  Google Scholar 

  40. Z. Zhou, P.J. Scales, D.V. Boger, Chem. Eng. Sci. 56, 2901–2920 (2001)

    Article  CAS  Google Scholar 

  41. E. Cepeda, M.C. Villaran, A. Ibarz, J. Texture Stud. 30, 481–491 (1999)

    Article  Google Scholar 

  42. P.E.D. Augusto, V. Falguera, M. Cristianini, A. Ibarz, Int. J. Food Sci. Technol. 46, 1086–1092 (2011)

    Article  Google Scholar 

  43. J. Ahmed, H.S. Ramaswamy, K.C. Sashidhar, Food Sci. Technol. 40, 225–231 (2007)

    CAS  Google Scholar 

  44. V. Falguera, A. Ibarz, Food Biophys. 5, 114–119 (2010)

    Article  Google Scholar 

  45. A.C.K. Sato, R.L. Cunha, J. Food Eng. 91, 566–570 (2009)

    Article  CAS  Google Scholar 

  46. P.E.D. Augusto, V. Falguera, M. Cristianini, A. Ibarz, Food Bioprocess Technol. 5, 1715–1723 (2012)

    Article  CAS  Google Scholar 

  47. C.W.I. Haminiuk, M.R. Sierakowski, G.M. Maciel, R.M.B. Vidal, I.G. Branco, M.L. Masson, Int. J. Food Eng. 2(1), i–10 (2006)

    Article  Google Scholar 

  48. A. Altan, S. Kus, A. Kaya, Food Sci. Technol. Int. 11(2), 129–137 (2005)

    Article  Google Scholar 

  49. S. Basu, U.S. Shivharey, G.S.V. Raghavan, Int. J. Food Eng. 3(3), article 1 (2007)

    Article  Google Scholar 

  50. R. Ravi, S. Bhattacharya, Int. J. Food Sci. Technol. 41, 751–756 (2006)

    Article  CAS  Google Scholar 

  51. D. Tavares, M.R. Alcantara, C.C. Tadini, J. Telis-Romero, Int. J. Food Prop. 10(4), 829–839 (2007)

    Article  Google Scholar 

  52. A.M. Ramos, A. Ibarz, J. Texture Stud. 29, 313–324 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the São Paulo Research Foundation (FAPESP) for funding projects no. 2010/05241-8, 2010/05240-1, 2012/15352-9 and 2012/17381-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Soares Leite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, T.S., Augusto, P.E.D. & Cristianini, M. Using High Pressure Homogenization (HPH) to Change the Physical Properties of Cashew Apple Juice. Food Biophysics 10, 169–180 (2015). https://doi.org/10.1007/s11483-014-9385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-014-9385-9

Keywords

Navigation