Skip to main content
Log in

High diversity of fungi associated with altered wood materials in the hunting lodge of “La Muette”, Saint-Germain-en-Laye, France

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

“La Muette” is an eighteenth-century hunting lodge located in the forest of Saint-Germain-en-Laye, France. This study consisted in the implementation of multidisciplinary analytical tools to characterize the fungal biocontamination of woods inside the monument. The fungal colonization was first mapped by macroscopic visual observation of all the rooms. Brown rot and white rot present in different rooms and fruiting bodies of Serpula lacrymans were observed on the first and second floors in localized areas. At the same time, air sampling was carried out, and the volatile organic compounds (VOCs) specific to the activity of fungi were analysed by gas chromatography. The analysis of the VOCs confirmed the presence of active developments of moulds and S. lacrymans in the pavilion. Wood samples were collected from areas with visible fungal colonization and subjected to culturing, extraction of DNA and analysis of the ITS sequences after PCR amplification. Culturing and microscopic observation revealed the presence of several moulds: Penicillium sp., Cladosporium sp., Acremonium sp., Humicola sp., Rhizopus sp. and Mucor sp. Isolates not identified by this approach were identified by analysing ITS sequences as Trichoderma atroviride, Engyodontium album and Umbelopsis isabellina. The presence of additional Ascomycota (Acremonium charticola, Aspergillus conicus, Chaetomium elatum, Lecanicillium sp.) and of the Basidiomycota Coprinellus aff. radians was revealed after DNA extraction, amplification and analysis of ITS sequences directly on wood samples. In conclusion, a high fungal diversity including moulds, S. lacrymans and C. aff. radians was demonstrated in association with altered wood in the monument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    Article  CAS  PubMed  Google Scholar 

  • Allmér J, Vasiliauskas R, Ihrmark K, Stenlid J, Dahlberg A (2006) Wood-inhabiting fungal communities in woody debris of Norway spruce (Picea abies (L.) karst.), as reflected by sporocarps, mycelial isolations and T-RFLP identification. FEMS Microbiol Ecol 55:57–67

    Article  PubMed  CAS  Google Scholar 

  • Anton R, Moularat S, Robine E (2016) A new approach to detect early or hidden fungal development in indoor environments. Chemosphere 143:41–49

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  CAS  PubMed  Google Scholar 

  • Badalyan SM, Szafranski K, Hoegger PJ, Navarro-González M, Majcherczyk A, Kües U (2011) New Armenian wood-associated Coprinoid mushrooms: Coprinopsis strossmayeri and Coprinellus aff. radians. Diversity 3:136–154

    Article  Google Scholar 

  • Bennet JW, Wunch KG, Faison BD (2002) Use of fungi in biodegradation. In: manual of environmental microbiology, 2nd Ed. Christon J Hurst, pp 960-971

  • Blanchette RA (2000) A review of microbial deterioration found in archeological wood from different environments. Int Biodeterior Biodegrad 46:189–204

    Article  Google Scholar 

  • Brownlee C, Jennings DH (1982) Long distance translocation in Serpula lacrymans: velocity estimates and the continuous monitoring of induced perturbations. Trans Br Mycol Soc 79:143–148

    Article  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 2. Academic Press Ltd, London

    Google Scholar 

  • Ebrahimi A, Karimi S, Lotfalian S, Majidi F (2011) Allergenic fungi in deteriorating historic objects of Shahrekord museum, in Iran. Jundishapur J Microbiol 4:261–265

    Google Scholar 

  • England LS, Lee H, Trevors JT (1997) Persistence of Pseudomonas aureofaciens strains and DNA in soil. Soil Biol Biochem 29:1521–1527

    Article  CAS  Google Scholar 

  • Ewen RJ, Jones PRH, Ratcliffe NM, Spencer-Phillips PTN (2004) Identification by gas chromatography-mass spectrometry of the volatile organic compounds emitted from the wood-rotting fungi Serpula lacrymans and Coniophora puteana, and from Pinus sylvestris timber. Mycol Res 108:806–814

    Article  CAS  PubMed  Google Scholar 

  • Gabriel J, Svec K (2017) Occurrence of indoor wood decay Basidiomycetes in Europe. Fungal Biol Rev 31:212–217

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583

    Article  Google Scholar 

  • Guerra FL, Lopes W, Cazarolli JC, Lobato M, Masuero AB, Dal Molin DCC, Bento FM, Schrank A, Vainstein MH (2019) Biodeterioration of mortar coating in historical buildings: microclimatic characterization, material, and fungal community. Build Environ 155:195–209

    Article  Google Scholar 

  • Haleem Khan AA, Mohan Karuppayil S (2012) Fungal pollution of indoor environments and its management. Saudi J Biol Sci 19:405–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton S, Hepher MJ, Sommerville J (2006) Detection of Serpula lacrymans infestation with a polypyrrole sensor array. Sens Actuator B-Chem 113:989–997

    Article  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  • Huckfeldt T, Schmidt O (2006) Identification key for European strand-forming house rot fungi. Mycologist 20:42–56

    Article  Google Scholar 

  • Irbe I, Karadelev M, Andersone I, Andersons B (2012) Biodeterioration of external wooden structures of the Latvian cultural heritage. J Cult Herit 13:S79–S84

    Article  Google Scholar 

  • Jang Y, Jang S, Min M, Hong JH, Lee H, Lee H, Lim YW, Kim JJ (2015) Comparison of the diversity of Basidiomycetes from dead wood of the Manchurian fir (Abies holophylla) as evaluated by fruiting body collection, mycelial isolation, and 454 sequencing. Microb Ecol 70:634–645

    Article  PubMed  Google Scholar 

  • Jasalavich CA, Ostrofsky A, Jellison J (2000) Detection and identification of decay fungi in spruce wood by restriction fragment length polymorphism analysis of amplified genes encoding rRNA. Appl Environ Microbiol 66:4725–4734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joblin Y, Moularat S, Anton R, Bousta F, Orial G, Robine E, Picon O, Bourouina T (2010) Detection of moulds by volatile organic compounds: application to heritage conservation. Int Biodeterior Biodegrad 64:210–217

    Article  CAS  Google Scholar 

  • Korpi A, Pasanen AL, Viitanen H (1998) Volatile metabolites of Serpula lacrymans, Coniophora puteana, Poria placenta, Stachybotrys chartarum and Chaetomium globosum. Build Environ 34:205–211

    Article  Google Scholar 

  • Koziróg A, Otlewska A, Piotrowska M, Rajkowska K, Nowicka-Krawczyk P, Hachułka M, Wolski GJ, Gutarowska B, Kunicka-Styczynska A, Libudzisz Z, Zakowska Z, Zydzik-Białek A (2014) Colonising organisms as a biodegradation factor affecting historical wood materials at the former concentration camp of Auschwitz II – Birkenau. Int Biodeterior Biodegrad 86:171–178

    Article  Google Scholar 

  • Kwaśna H, Mazur A, Kuźmiński R, Jaszczak R, Turski M, Behnke-Borowczyk J, Adamowicz K, Łakomy P (2017) Abundance and diversity of wood-decay fungi in managed and unmanaged stands in a scots pine forest in western Poland. For Ecol Manag 400:438–446

    Article  Google Scholar 

  • Lepinay C, Mihajlovski A, Seyer D, Touron S, Bousta F, Di Martino P (2017) Biofilm communities survey at the areas of salt crystallization on the walls of a decorated shelter listed at UNESCO world cultural heritage. Int Biodeterior Biodegrad 122:116–127

    Article  CAS  Google Scholar 

  • Lindner DL, Vasaitis R, Kubartová A, Allmér J, Johannesson H, Banik MT, Stenlid J (2011) Initial fungal colonizer affects mass loss and fungal community development in Picea abies logs 6yr after inoculation. Fungal Ecol 4:449–460

    Article  Google Scholar 

  • Mallikarjunaiah RR, Bhide VP (1983) Cellulolytic activity of fungi isolated from different sources. Agricult Wastes 7:175–182

    Article  Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurice S, Le Floch G, Le Bras-Quéré M, Barbier G (2011) Improved molecular methods to characterise Serpula lacrymans and other Basidiomycetes involved in wood decay. J Microbiol Meth 84:208–215

    Article  CAS  Google Scholar 

  • Mihajlovski A, Gabarre A, Seyer D, Bousta F, Di Martino P (2017) Bacterial diversity on rock surface of the ruined part of a French historic monument: The Chaalis abbey. International Biodeterioration & Biodegradation 120:161-169

    Article  CAS  Google Scholar 

  • Moularat S (2007) Procédé de détection d'une contamination fongique. INPI n°0701578, France

  • Moularat S, Robine E, Ramalho O, Oturan MA (2008a) Detection of fungal development in closed spaces through the determination of specific chemical targets. Chemosphere 72:224–232

    Article  CAS  PubMed  Google Scholar 

  • Moularat S, Robine E, Ramalho O, Oturan M (2008b) Detection of fungal development in a closed environment through the identification of specific VOC: demonstration of a specific VOC fingerprint for fungal development. Sci Tot Environ 407:139–146

    Article  CAS  Google Scholar 

  • Moularat S, Hulin M, Robine E, Annesi-Maesano I, Caillaud D (2011) Airborne fungal volatile organic compounds in rural and urban dwellings: detection of mould contamination in 94 homes determined by visual inspection and airborne fungal volatile organic compounds method. Sci Total Environ 409:2005–2009

    Article  CAS  PubMed  Google Scholar 

  • Oliver PJ, Perkins J, Jellison J (2010) Effect of fungal pretreatment of wood on successional decay by several inky cap mushroom species. Int Biodeterior Biodegrad 7:646–651

    Article  CAS  Google Scholar 

  • Ortiz R, Navarrete H, Navarrete J, Párraga M, Carrasco I, de la Vega E, Ortiz M, Herrera P, Blanchette RA (2014a) Deterioration, decay and identification of fungi isolated from wooden structures at the Humberstone and Santa Laura saltpeter works: a world heritage site in Chile. Int Biodeterior Biodegrad 86:309–316

    Article  Google Scholar 

  • Ortiz R, Párraga M, Navarrete J, Carrasco I, de la Vega E, Ortiz M, Herrera P, Jurgens JA, Held BW, Blanchette RA (2014b) Investigations of biodeterioration by fungi in historic wooden churches of Chiloé, Chile. Microb Ecol 67:568–575

    Article  CAS  PubMed  Google Scholar 

  • Palfreyman JW, White NA, Buultjens TEJ, Glancy H (1995) The impact of current research on the treatment of infestations by the dry rot fungus Serpula lacrymans. Int Biodeterior Biodegrad 35:369–395

    Article  Google Scholar 

  • Porter TM, Skillman JE, Moncalvo JM (2008) Fruiting body and soil rDNA sampling detects complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlock-dominated forest plot in southern Ontario. Mol Ecol 17:3037–3050

    Article  CAS  PubMed  Google Scholar 

  • Pottier D, Andre V, Rioult JP, Bourreau A, Duhamel C, Kientz Bouchart V, Richard E, Guibert M, Verite P, Garon D (2014) Airborne molds and mycotoxins in Serpula lacrymans–damaged homes. Atmos Pollut Res 5:325–334

    Article  CAS  Google Scholar 

  • Prewitt ML, Diehl SV, McElroy TC, Diehl WJ (2008) Comparison of general fungal and basidiomycete-specific ITS primers for identification of wood decay fungi. Forest Prod J 58:66–71

    CAS  Google Scholar 

  • Rodrigues EC, Pizzirani-Kleiner AA, Tanaka Y, Jorge JA (1991) Cytogenetic and biochemical aspects of the cellulolytic fungus Humicola sp. Mycol Res 95:169–177

    Article  CAS  Google Scholar 

  • Santucci R, Meunier O, Ott M, Herrmann F, Freyd A, de Blay F (2007) Contamination fongique des habitations : bilan de 10 années d'analyses. Rev Fr Allergol Immunol Clin 47:402–408

    Google Scholar 

  • Schmidt O (2006) Wood and tree fungi. Biology, damage, protection, and use. Springer, Berlin, p 344

    Google Scholar 

  • Schmidt O (2007) Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol Prog 6:261–279

    Article  Google Scholar 

  • Schmidt O, Moreth U (2002) Data bank of rDNA-ITS sequences from building-rot fungi for their identification. Wood Sci Technol 36:429–433

    Article  CAS  Google Scholar 

  • Schmidt O, Gaiser O, Dujesiefken D (2012) Molecular identification of decay fungi in the wood of urban trees. Eur J Forest Res 131:885–891

    Article  CAS  Google Scholar 

  • Seifert KA, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Shirouzu T, Uno K, Hosaka K, Hosoya T (2016) Early-diverging wood-decaying fungi detected using three complementary sampling methods. Mol Phylogenet Evol 98:11–20

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 pyrosequencing and sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdier T, Coutand M, Bertron A, Roques C (2014) A review of indoor microbial growth across building materials and sampling and analysis methods. Build Environ 80:136–149

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • White NA, Low GA, Singh J, Staines H, Palfreyman JW (1997) Isolation and environmental study of ‘wild’ Serpula lacrymans and Serpula himantioides from the Himalayan forests. Mycol Res 101:580–584

    Article  Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rossello-Mora R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  CAS  PubMed  Google Scholar 

  • Zyani M, Mortabit D, Mostakim M, Iraqui M, Haggoud A, Ettayebi M, Koraichi SI (2009) Cellulolytic potential of fungi in wood degradation from an old house at the Medina of fez. Ann Microbiol 59:699–704

    Article  CAS  Google Scholar 

Download references

Funding

This study was part of the project “Détection, viabilité, cartographie et méthodes de lutte contre Serpula lacrymans dans les monuments historiques” funded by “La Fondation des Sciences du Patrimoine” (AAP_2015bis_M02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Di Martino.

Additional information

Section Editor: Dominik Begerow

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimen, A., Barboux, R., Mihajlovski, A. et al. High diversity of fungi associated with altered wood materials in the hunting lodge of “La Muette”, Saint-Germain-en-Laye, France. Mycol Progress 19, 139–146 (2020). https://doi.org/10.1007/s11557-019-01548-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-019-01548-5

Keywords

Navigation