Skip to main content
Log in

Hydrogen Transport Conditions and Effects in Cathodically Polarized AF1410 Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen permeation of AF1410 steel membranes due to cathodic polarization using the Devanathan and Starchurski double cell (DSDC) with 0.1M H2SO4 + 1 g/L Na2HAsO4·7H2O, and 0.1M NaOH media in the input and exit cells, respectively, under Galvanostatic conditions depended on the polarization current density, membrane thickness, and surface roughness. For a 0.35-mm-thick membrane, the steady-state hydrogen permeated using increasing polarization currents from 1.00 to 10.00 mA varied correspondingly from 0.6 × 10−5 (mol H/m2s) to 1.03 × 10−5 mol H/m2s, with accompanying transient rates or permeation rates of 1.07 × 10−4 A/m2s to 4.40 × 10−4 A/m2s. With a constant polarization current density of 20 A/m2, the steady-state permeated hydrogen was in the range of 1.00 × 10−5 (mol H/m2s) to 3.50 × 10−5 (mol H/m2s), for 0.30-mm and 0.09-mm-thick membranes, respectively. The breakthrough times decreased from 2130 to 300 seconds with decreasing membranes thickness from 0.30 to 0.09 mm. The formation of blisters was observed more on the input side surface than on the exit-side surface and occurred for polarization charging current densities greater than 30.0 A/m2. The tendency for blister formation increased with decreasing material’s surface roughness. Cracks accompanying blisters tended to form on both the input and exit-side surfaces only with continued charging following the attainment of steady-state permeation, though they were generally lower on the potentiostated exit side. The average effective permeation coefficient of hydrogen was determined to be 2.89 × 10−12 m2/s for membrane thicknesses ranging from 0.09 to 0.30 mm based on the slope method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. New Materials for Next-Generation Commercial Transports, 1996, p. 28, http://www.nap.edu/openbook/0309053900/html/28.html

  2. V.S. Agarwala: in Hydrogen Effects on Material Behavior, Neville R. Moody and Anthony W. Thompson, eds., TMS, Warrendale, PA, 1990, pp. 1033–45

  3. R.L.S. Thomas, J.R. Scully, R.P. Gangloff: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 327–44

    Article  CAS  Google Scholar 

  4. G.B. Olson: Innovations in Ultra-High Strength Steel Technology, 34th Sagamore Army Materials Conf., United States Army Laboratory Command, Watertown, MA, 1987, pp. 3–5

  5. D. Li, R.P. Gangloff, J.R. Scully: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 849–64

    Article  CAS  Google Scholar 

  6. V.S. Agarwala, D.A. Berman, and G. Kohlhaas: Corrosion/84, New Orleans, LA, NACE, 1984, 19p

  7. R. Ayer, P.M. Machmeier: Metall. Trans. A, 1993, vol. 24A, pp. 1943–55

    CAS  Google Scholar 

  8. A. McNabb, P.K. Foster: Trans. AIME, 1963, vol. 227, pp. 618–27

    CAS  Google Scholar 

  9. R.A. Oriani: Acta Metall., 1970, vol. 18, pp. 147–57

    Article  CAS  Google Scholar 

  10. Y. Tobe, W.R. Tyson: Scripta Metall., 1977, vol. 11, pp. 849–52

    Article  CAS  Google Scholar 

  11. J.K. Lin, R.A. Oriani: Acta Metall., 1983, vol. 31, pp. 1071–77

    Article  CAS  Google Scholar 

  12. B.G. Pound: Acta Mater., 1998, vol. 46, pp. 5733–43

    Article  CAS  Google Scholar 

  13. C.T. Liu and C.G. McKamey: in High Temperature Aluminides and Intermetallics, S.H. Whang and C.T. Liu, eds., TMS, Warrendale, PA, 1990, pp. 133–51

  14. N.S. Stoloff: Environmental Embrittlement, Chapter 12, in Physical Metallurgy and processing of Intermetallic Compounds, N.S. Stoloff and V.K. Sikka, eds., Chapman & Hall, New York, NY, 1996, pp. 479–516

  15. J. Barcik, K. Stepien: Mater. Sci. Eng., 2002, vol. A334, pp. 28–32

    CAS  Google Scholar 

  16. E.W. Johnson and M.L. Hill: Trans. Am. Inst. Min. Metall. Pet. Eng., 1960, vol. 218, pp. 1104–12.

  17. H.G. Nelson and J.E. Stein: Report No. NASA TND-7265, NASA, AMES Research Center, Moffett Field, CA, 1972

  18. N.R. Quick, H.H. Johnson: Acta Metall., 1978, vol. 26, pp. 903–07

    Article  CAS  Google Scholar 

  19. G.P. Tiwari, A. Bose, J.K. Chakravartty, S.L. Wadekar, M.K. Totlani, R.N. Arya, and R.K. Fotedar: Mater. Sci. Eng., 2000, vol. A286, pp. 269–81

  20. P.A. Sundaram, D.K. Marble: J. Alloys Compd., 2003, vol. 360, pp. 90–97

    Article  CAS  Google Scholar 

  21. M.A.V. Devanathan, Z.O.J. Stachurski: Proc. R. Soc., 1962, vol. A2, pp. 90–102

    Google Scholar 

  22. V.S. Agarwala and J.J. De Luccia: Proc. 7th Int. Congr. on Metallic Corrosion, Hotel Nacional/Rio de Janeiro, Brasil, Oct. 1978, pp. 795–805

  23. J.J. DeLuccia, D.A. Berman: ASTM STP, 1981, vol. 227, pp. 256–73

    Google Scholar 

  24. S.M. Charca: Master of Science Thesis, University of Puerto Rico–Mayagüez, Mayagüez, 2005

  25. A.J. Kumnick, H.H. Johnson: Metall. Trans. A, 1975, vol. 6A, pp. 1087–91

    CAS  Google Scholar 

  26. N.R. Moody, S.L. Robinson, S.M. Myers, F.A. Greulich: Acta Metall., 1989, vol. 37 (1), pp. 281–90

    Article  CAS  Google Scholar 

  27. M.R. Louthan Jr., R.G. Derrick: Corr. Sci., 1975,vol. 15, pp. 565–77

    Article  CAS  Google Scholar 

  28. M.R. Louthan Jr., J.A. Donovan, G.R. Caskey: Nucl. Technol., 1975, vol. 26, pp. 192–200

    CAS  Google Scholar 

  29. M.L. Hill, E.W. Johnson: Trans. TMS-AIME, 1959, vol. 215, pp. 717–25

    CAS  Google Scholar 

  30. J.G. Harhai, T.S. Harhai, T.S. Viswanathan, H.M. Davis: ASM Trans. Q., 1965, vol. 58, pp. 210–15

    CAS  Google Scholar 

  31. NACE Technical Report No. 24185, NACE International Publication 8X294, NACE, Houston, TX, 2003

  32. J. McBreen, L. Nanis, W. Beck: J. Electrochem. Soc., 1966, vol. 113 (11), pp. 1219–22

    Article  Google Scholar 

  33. ASTM G 148: Standard Practice for Evaluation of Hydrogen Uptake, Permeation, and Transport in Metals by an Electrochemical Technique, ASTM, Philadelphia, PA

  34. H.S. Carslaw, J.C. Jaeger: Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford, United Kingdom, 1958

    Google Scholar 

  35. J. Crank: The Mathematic of Diffusion, Clarendon Press, Oxford, United Kingdom, 1967

    Google Scholar 

  36. J.O’M. Bockris, J. McBreen, L. Nanis: J. Electrochem. Soc., 1965, vol. 112, pp. 1025–31

    Article  CAS  Google Scholar 

  37. J.F. Newman and L.L. Shreir: Corr. Sci., 1969, vol. 9, pp. 631–41

  38. P. Kedzierzawski, Z. Szklarska-Smialowska, M. Smialowski: J. Electrochem. Soc., 1980, vol. 127, pp. 2550–55

    Article  CAS  Google Scholar 

  39. Y.T. Al-Janabi, A.L. Lewis, G.A. Oweimreen: J. Electrochem. Soc., 1995, vol. 142, pp. 2865–72

    Article  CAS  Google Scholar 

  40. J. Barber, B.E. Conway: J. Chem. Soc., Faraday Trans., 1996, vol. 92, pp. 3709–17

    Article  CAS  Google Scholar 

  41. S.Y. Qian, B.E. Conway, G. Jerkiewicz: J. Chem. Soc., Faraday Trans., 1998, vol. 94, pp. 2945–54

    Article  CAS  Google Scholar 

  42. S. Charca, O.N.C. Uwakweh, and V.S. Agarwala: J. Mater. Eng. Perform., 2007

  43. J.J. DeLuccia: Electrochemical Aspects of Hydrogen in Metals: Hydrogen Embrittlement: Prevention and Control, ASTM STP 962, L. Raymond, ed., ASTM, Philadelphia, PA, 1988, pp. 17–34

  44. R.N. Iyer, Howard W. Pickering, Mehrooz Zamanzadeh: Scripta Mater., 1988, vol. 22, pp. 911–16

    Article  CAS  Google Scholar 

  45. K. Kiuchi, R.B. McLellan: Acta Metall., 1983, vol. 31, pp. 961–84

    Article  CAS  Google Scholar 

  46. S.L. Amey, G.M. Michal, J.H. Payer: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 723–32

    Article  CAS  Google Scholar 

  47. T. Zakroczymski: J. Electrochem. Chem., 1999, vol. 475, p. 82

    Article  CAS  Google Scholar 

  48. C.J. Wen, C. Ho, B.A. Boukamp, I.D. Raistrick, W. Weppner, R.A. Huggins: Int. Met. Rev., 1981, vol. 26 (5), pp. 253–68

    CAS  Google Scholar 

Download references

Acknowledgment

One of the authors (ONCU) wishes to acknowledge the support and guidance of Dr. Yapa Rajapakse, the program manager of ONR Grant No. N000140310540, and the support from the United States Navy/ASEE Summer Faculty Fellow Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswald N.C. Uwakweh.

Additional information

Manuscript submitted October 27, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charca, S., Uwakweh, O. & Agarwala, V. Hydrogen Transport Conditions and Effects in Cathodically Polarized AF1410 Steel. Metall Mater Trans A 38, 2389–2399 (2007). https://doi.org/10.1007/s11661-007-9241-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9241-3

Keywords

Navigation