Skip to main content
Log in

MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Carbide precipitates in Ni-based superalloys are considered to be desirable phases that can contribute to improving high-temperature properties as well as aid in microstructural refinement of the material; however, they can also serve as crack initiation sites during fatigue. To date, most of the knowledge pertaining to carbide formation has originated from assessments of cast and wrought Ni-based superalloys. As powder-processed Ni-based superalloys are becoming increasingly widespread, understanding the different mechanisms by which they form becomes increasingly important. Detailed characterization of MC carbides present in two experimental high Nb-content powder-processed Ni-based superalloys revealed that Hf additions affect the resultant carbide morphologies. This morphology difference was attributed to a higher magnitude of elastic strain energy along the interface associated with Hf being soluble in the MC carbide lattice. The composition of the MC carbides was studied through atom probe tomography and consisted of a complex carbonitride core, which was rich in Nb and with slight Hf segregation, surrounded by an Nb carbide shell. The characterization results of the segregation behavior of Hf in the MC carbides and the subsequent influence on their morphology were compared to density functional theory calculations and found to be in good agreement, suggesting that computational modeling can successfully be used to tailor carbide features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  2. D. Furrer and H. Fecht: JOM, 1999, vol. 51, pp. 14–7.

    Article  CAS  Google Scholar 

  3. C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, Wiley, New York, 1987.

  4. R.F. Decker and C.T. Sims: The Metallurgy of Nickel-Base Superalloys, Paul D. Merica Research Laboratory, 1972.

    Google Scholar 

  5. R.R. Unocic, L. Kovarik, C. Shen, P.M. Sarosi, Y. Wang, J. Li, S. Ghosh, and M.J. Mills: in Superalloys 2008 (Eleventh International Symposium), TMS, 2008, pp. 377–85.

  6. R.R. Unocic, G.B. Viswanathan, P.M. Sarosi, S. Karthikeyan, J. Li, and M.J. Mills: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 25–32.

    Article  Google Scholar 

  7. D. Locq, P. Caron, S. Raujol, F. Pettinari-Sturmel, A. Coujou, and N. Clement: in Superalloys 2004 (Tenth International Symposium), TMS, 2004, pp. 179–87.

  8. R.C. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

  9. M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, 2nd edn., Asm International, Materials Park, OH, 2002.

    Google Scholar 

  10. T.M. Pollock and R.D. Field: in Dislocations in Solids, vol. 11, 2002, pp. 547–618.

  11. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1588–603.

    Article  CAS  Google Scholar 

  12. Y. Mishima, S. Ochiai, M. Yodogawa, and T. Suzuki: Trans. Japan Inst. Met., 1986, vol. 27, pp. 41–50.

    Article  CAS  Google Scholar 

  13. Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, and T. Suzuki: Trans. Japan Inst. Met., 1986, vol. 27, pp. 648–55.

    Article  CAS  Google Scholar 

  14. S. Antonov, M. Detrois, D. Isheim, D.N. Seidman, R.C. Helmink, R.L. Goetz, E. Sun, and S. Tin: Mater. Des., 2015, vol. 86, pp. 649–55.

    Article  CAS  Google Scholar 

  15. G.W. Meetham: Met. Technol., 1984, vol. 11, pp. 414–8.

    Article  CAS  Google Scholar 

  16. L.Z. He, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, A.K. Tieu, C. Lu, and H.T. Zhu: Mater. Sci. Eng. A, 2005, vol. 397, pp. 297–304.

    Article  Google Scholar 

  17. C.-N. Wei, H.-Y. Bor, and L. Chang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3741–7.

    Article  Google Scholar 

  18. A.K. Jena and M.C. Chaturvedi: J. Mater. Sci., 1984, vol. 19, pp. 3121–39.

    Article  CAS  Google Scholar 

  19. F.T. Furillo, J.M. Davidson, J.K. Tien, and L.A. Jackman: Mater. Sci. Eng., 1979, vol. 39, pp. 267–73.

    Article  CAS  Google Scholar 

  20. A. Pineau and S.D. Antolovich: Eng. Fail. Anal., 2009, vol. 16, pp. 2668–97.

    Article  CAS  Google Scholar 

  21. J. Jiang, J. Yang, T. Zhang, J. Zou, Y. Wang, F.P.E. Dunne, and T.B. Britton: Acta Mater., 2016, vol. 117, pp. 333–44.

    Article  CAS  Google Scholar 

  22. P. Kontis, D.M. Collins, A.J. Wilkinson, R.C. Reed, D. Raabe, and B. Gault: Scr. Mater., 2018, vol. 147, pp. 59–63.

    Article  CAS  Google Scholar 

  23. X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, J.S. Hou, and H.Q. Ye: Mater. Sci. Eng. A, 2008, vol. 485, pp. 74–79.

    Article  Google Scholar 

  24. G. Lvov, V.I. Levit, and M.J. Kaufman: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1669–79.

    Article  CAS  Google Scholar 

  25. X. Dong, X. Zhang, K. Du, Y. Zhou, T. Jin, and H. Ye: J. Mater. Sci. Technol., 2012, vol. 28, pp. 1031–8.

    Article  CAS  Google Scholar 

  26. C.T.T. Sims: in Niobium - Proceedings of the international symposium, H. Stuart, ed., Metallurgical Society of AIME, Warrendale, PA, 1981, pp. 1169–1220.

  27. P.A.J. Bagot, O.B.W. Silk, J.O. Douglas, S. Pedrazzini, D.J. Crudden, T.L. Martin, M.C. Hardy, M.P. Moody, and R.C. Reed: Acta Mater., 2017, vol. 125, pp. 156–65.

    Article  CAS  Google Scholar 

  28. D.N. Duhl and C.P. Sullivan: JOM, 1971, vol. 23, pp. 38–40.

    Article  CAS  Google Scholar 

  29. J.E. Doherty, A.F. Giamei, and B.H. Kear: Can. Metall. Q., 1974, vol. 13, pp. 229–36.

    Article  CAS  Google Scholar 

  30. C. Lund and J.F. Radavich: in Superalloys 1980 (Fourth International Symposium), TMS, 1980, pp. 85–98.

  31. Q.Z. Chen, C.N. Jones, and D.M. Knowles: Scr. Mater., 2002, vol. 47, pp. 669–75.

    Article  CAS  Google Scholar 

  32. R. V. Miner: Metall. Trans. A, 1977, vol. 8, pp. 259–63.

    Article  CAS  Google Scholar 

  33. Q. Chen, N. Jones, and D. Knowles: Acta Mater., 2002, vol. 50, pp. 1095–1112.

    Article  CAS  Google Scholar 

  34. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.

    Article  CAS  Google Scholar 

  35. B.H. Toby and R.B. Von Dreele: J. Appl. Crystallogr., 2013, vol. 46, pp. 544–49.

    Article  CAS  Google Scholar 

  36. K. Momma and F. Izumi: J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–76.

    Article  CAS  Google Scholar 

  37. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953–79.

    Article  Google Scholar 

  38. G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.

    Article  CAS  Google Scholar 

  39. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–8.

    Article  CAS  Google Scholar 

  40. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. a. Persson: APL Mater., 2013, vol. 1, p. 11002.

  41. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder: Comput. Mater. Sci., 2013, vol. 68, pp. 314–9.

    Article  CAS  Google Scholar 

  42. R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, and S.P. Ong: Sci. Data, 2016, vol. 3, p. 160080.

    Article  CAS  Google Scholar 

  43. A. Mitchell, A.J. Schmalz, C. Schvezov, and S.L. Cockroft: in Superalloys 718, 625, 706 and Various Derivatives (1994), TMS, 1994, pp. 65–78.

  44. S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, R.C. Helmink, E. Sun, and S. Tin: Mater. Sci. Eng. A, 2017, vol. 687, pp. 232–40.

    Article  CAS  Google Scholar 

  45. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.

    CAS  Google Scholar 

  46. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  47. G.D. Smith and S.J. Patel: in Superalloys 718, 625, 706 and Various Derivatives (2005), TMS, 2005, pp. 135–54.

  48. M.J. Starink, H. Cama, and R.C. Thomson: Scr. Mater., 1997, vol. 38, pp. 73–80.

    Article  Google Scholar 

  49. A.H. Cottrell: An Introduction to Metallurgy, 2nd edn., The University Press, Cambridge, UK, 1995.

    Google Scholar 

  50. C.C. Silva, H.C. De Miranda, M.F. Motta, J.P. Farias, C.R.M. Afonso, and A.J. Ramirez: J. Mater. Res. Technol., 2013, vol. 2, pp. 228–37.

    Article  CAS  Google Scholar 

  51. L. Zhang, H. Liu, X. He, Rafi-ud-din, X. Qu, M. Qin, Z. Li, and G. Zhang: Mater. Charact., 2012, vol. 67, pp. 52–64.

    Article  CAS  Google Scholar 

  52. C.K. Sudbrack, L.J. Evans, A. Garg, D.E. Perea, and D.K. Schreiber: in Superalloys 2016 (Thirteenth International Symposium), Wiley, Hoboken, NJ, (2016) pp. 927–36.

  53. W. Chen, P. Dalach, W.F. Schneider, and C. Wolverton: Langmuir, 2012, vol. 28, pp. 4683–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by Rolls-Royce Corporation. APT was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The local-electrode atom-probe tomograph at NUCAPT was acquired and upgraded with equipment grants from the MRI program of the National Science Foundation (Grant Number DMR-0420532) and the DURIP program of the Office of Naval Research (Grant Numbers N00014-0400798, N00014-0610539, N00014-0910781). This work made use of the MatCI Facility at Northwestern University. NUCAPT and MatCI received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center, NUCAPT through the SHyNE Resource (NSF NNCI-1542205), and the Initiative for Sustainability and Energy at Northwestern (ISEN). This work made use of the EPIC, Keck-II, and/or SPID facility(ies) of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stoichko Antonov.

Additional information

Manuscript submitted January 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, S., Chen, W., Huo, J. et al. MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys. Metall Mater Trans A 49, 2340–2351 (2018). https://doi.org/10.1007/s11661-018-4587-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4587-2

Navigation