Skip to main content
Log in

Fe-Ni Alloy Synthesis Based on Nitrates Thermal Decomposition Followed by H2 Reduction

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Iron-nickel alloys have been synthesized through thermal decomposition of nitrates aqueous solutions followed by H2 reduction. The effect of temperature [773 K to 973 K (500 °C to 700 °C)] over the oxide reduction kinetics has been studied. The results indicate that at 973 K (700 °C) and for a reaction time of 90 minutes, it was possible to obtain Fe-Ni alloys with distinct compositions. The X-ray diffraction analysis (XRD) of the initial oxide mixture has shown distinct peaks of iron and nickel oxides (Fe2O3, NiO, and Fe2NiO4). The same analysis for the reduced samples suggests that alloying has taken place. Indeed, the Rietveld analysis of the XRD patterns indicates the presence of two solid solutions—alpha (BCC) and FeNi3 (FCC), with varying mass percent depending on the initial Fe to Ni ratio, in accordance with the information contained in the Fe-Ni phase diagram. The calculated alloy average crystallite size has shown to be equal to 26 nm. Total magnetization measurements suggest a superparamagnetic behavior, which is a typical result for magnetic materials of considerable nanostructured content, in accordance with the expectation based on the quantitative evaluation of the XRD data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Herzer, IEEE Trans. Magn. 25 (1989), 3327−3329.

    Article  Google Scholar 

  2. C. P. Bean, J. D. Livingston, Journal of Applied Physics 30 4 (1959) 120−129.

    Article  Google Scholar 

  3. R. P. Cowburn, Journal of Applied Physics 93 11 (2003) 9310−9315.

    Article  Google Scholar 

  4. T. Yokoyama, K. Eguchi, Phys. Rev. Lett. 2011, 107 (6), pp. 065901-1–065901-4.

    Article  Google Scholar 

  5. N. Ballot, F. Schoenstein, S. Mercone, T. Chauveau, O. Brinza, N. Jouini, Journal of Alloys and Compounds Volume 536 (2012) 381–385.

    Article  Google Scholar 

  6. M.H. Xu, W. Zhong, X.S. Qi, C.T. Au, Y. Deng, Y.W. Du, Journal of Alloys and Compounds 495 (2010) 200−204.

    Article  Google Scholar 

  7. M. Bahgat, M.K. Paek, J.J. Pak, Journal of Alloys and Compounds 466 (2008) 59–66.

    Article  Google Scholar 

  8. D.H. Riu, S.T. Oh, Current Applied Physics Volume 12 (2012) 188–191.

    Article  Google Scholar 

  9. H.Q. Wu, Y.J. Cao, P.S. Yuan, H.Y. Xu, X.W. Wei, Chem. Phys. Lett. 406 (2005) 148–53.

    Article  Google Scholar 

  10. S.W. Du, R.V. Ramanujan, Journal of Magnetism and Magnetic Materials 292 (2005) 286−298.

    Article  Google Scholar 

  11. L.H. Zhu, X.M. Ma, L. Zhao, Journal of Materials Science 36 23 (2001) 5571−5574.

    Article  Google Scholar 

  12. Y. Liu, J. Zhang, L. Yu, G. Jia, C. Jing, S. Cao, J. Magn. Magn. Mater. 285 (2005) 138–44.

    Article  Google Scholar 

  13. E.A. Brocchi, M.S. Motta, P.K. Jena, (2004) Metall. Mater. Trans. B, 35B, pp. 1107–12.

    Google Scholar 

  14. P.K. Jena, E.A. Brocchi, M.S. Motta, Materials Science & Engineering A 313 (2001) 180−186.

    Article  Google Scholar 

  15. E.A. Brocchi, M.S. Motta, I.G. Solórzano, P.K. Jena, F.J. Moura Materials Science and Engineering B Volume 112 Issue 2-3 (2004) 200−205.

    Article  Google Scholar 

  16. G. Cacciamani, J. De Keyzer, R. Ferro, U.E. Klotz, J. Lacaze, P. Wollants, Intermetallics, 14 (2006) 1312−1325.

    Article  Google Scholar 

  17. E. A. Brocchi, R. C. S. Navarro, M.S. Motta, F. J. Moura, I.G. Solórzano. Materials Chemistry and Physics, 140 (2013) 273 – 283.

    Article  Google Scholar 

  18. O.A. Cortez: Doctorate Thesis, Materials Engineering Department, Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil, 2008.

  19. A. Lutts, P.M. Gielen, Physica Status Solidi 41 (1970) 81−84.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPq, FAPERJ, and CAPES for the financial support and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Navarro Correia de Siqueira.

Additional information

Manuscript submitted February 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortez, O.A., Moura, F.J., de Albuquerque Brocchi, E. et al. Fe-Ni Alloy Synthesis Based on Nitrates Thermal Decomposition Followed by H2 Reduction. Metall Mater Trans B 45, 2033–2039 (2014). https://doi.org/10.1007/s11663-014-0221-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0221-x

Keywords

Navigation