Skip to main content
Log in

Identification of a Deep Acceptor Level in ZnO Due to Silver Doping

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

There remains considerable interest in the behavior of acceptors in ZnO, the ultimate goal being the realization of device grade p-type material. Silver is a candidate acceptor, and, in this study, in situ doping of silver was performed during plasma-assisted molecular beam epitaxy. Silver concentrations, as determined by ion beam analysis, ranged between 1018 cm−3and 1020 cm−3, with as much as 94% incorporated substitutionally on Zn lattice sites. Variable magnetic field Hall effect measurements detected no evidence of holes, and 4 K photoluminescence was dominated by donor bound excitons. Transient capacitance measurements, however, suggested that incorporated silver had led to the formation of an acceptor, located approximately 320 meV above the valence band edge, indicating that compensation remains a significant issue in determining the conductivity of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schleife, F. Fuchs, C. Rödl, J. Furthmüller, and F. Bechstedt, Appl. Phys. Lett. 94, 012104 (2009).

    Article  ADS  CAS  Google Scholar 

  2. R.M. Park, M.B. Troffer, C.M. Rouleau, J.M. DePuydt, and M.A. Haase, Appl. Phys. Lett. 57, 2127 (1990).

    Article  ADS  CAS  Google Scholar 

  3. E. Tournié, P. Brunet, and J.P. Faurie, Appl. Phys. Lett. 74, 2200 (1999).

    Article  ADS  Google Scholar 

  4. E.C. Lee, Y.S. Kim, Y.G. Jin, and K.J. Chang, Phys. Rev. B: Condens. Matter Mater. Phys. 64, 851201 (2001).

    ADS  Google Scholar 

  5. C.H. Park, S.B. Zhang, and S.H. Wei, Phys. Rev. B: Condens. Matter Mater. Phys. 66, 732021 (2002).

    Google Scholar 

  6. E.C. Lee and K.J. Chang, Phys. Rev. B: Condens. Matter Mater. Phys. 70, 115210 (2004).

    Google Scholar 

  7. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  CAS  Google Scholar 

  8. Y. Yan, M.M. Al-Jassim, and S.-H. Wei, Appl. Phys. Lett. 89, 181912 (2006).

    Article  ADS  CAS  Google Scholar 

  9. Q. Wan, Z. Xiong, J. Dai, J. Rao, and F. Jiang, Opt. Mater. 30, 817 (2008).

    Article  ADS  CAS  Google Scholar 

  10. J. Hu and B.C. Pan, J. Chem. Phys. 129, 154706 (2008).

    Article  PubMed  ADS  CAS  Google Scholar 

  11. W. Bin, Z. Yue, M. Jiahua, and S. Wenbin, Appl. Phys. 94, 715 (2009).

    Google Scholar 

  12. H.Y. Lee, H.J. Ko, and T. Yao, Appl. Phys. Lett. 82, 523 (2003).

    Article  ADS  CAS  Google Scholar 

  13. E.K. Jeong, I.S. Kim, D.H. Kim, and S.Y. Choi, Korea. J. Mater. Res. 18, 84 (2008).

    Article  CAS  Google Scholar 

  14. Y. Zhang, Z. Zhang, B. Lin, Z. Fu, and J. Xu, J. Phys. Chem. B 109, 19200 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. L. Duan, B. Lin, W. Zhang, S. Zhong, and Z. Fu, Appl. Phys. Lett. 88, 232110 (2006).

    Article  ADS  CAS  Google Scholar 

  16. L. Duan, W. Gao, R. Chen, and Z. Fu, Solid State Commun. 145, 479 (2008).

    Article  ADS  CAS  Google Scholar 

  17. S.H. Jeong, B.N. Park, S.B. Lee, and J.H. Boo, Surf. Coat. Technol. 193, 340 (2005).

    Article  CAS  Google Scholar 

  18. B.D. Ahn, H.S. Kang, J.H. Kim, G.H. Kim, H.W. Chang, and S.Y. Lee, J. Appl. Phys. 100, 093701 (2006).

    Article  ADS  CAS  Google Scholar 

  19. H.S. Kang, B.D. Ahn, J.H. Kim, G.H. Kim, S.H. Lim, H.W. Chang, and S.Y. Lee, Appl. Phys. Lett. 88, 202108 (2006).

    Article  ADS  CAS  Google Scholar 

  20. A.N. Gruzintsev, V.T. Volkov, and E.E. Yakimov, Semiconductors 37, 259 (2003).

    Article  ADS  CAS  Google Scholar 

  21. O. Bierwagen, T. Ive, C.G. Van de Walle, and J.S. Speck, Appl. Phys. Lett. 93, 242108-3 (2008).

    Article  ADS  CAS  Google Scholar 

  22. S.H. Park, T. Minegishi, M. Ito, J.S. Park, I.H. Im, J.H. Chang, D.C. Oh, H.J. Ko, M.W. Cho, and T. Yao, J Cryst. Growth 311, 466 (2009).

    Article  ADS  CAS  Google Scholar 

  23. S.H. Park, J.H. Chang, H.J. Ko, T. Minegishi, J.S. Park, I.H. Im, M. Ito, D.C. Oh, M.W. Cho, and T. Yao, Appl. Surf. Sci. 254, 7972 (2008).

    Article  ADS  CAS  Google Scholar 

  24. U. Wahl, E. Rita, J.G. Correia, T. Agne, E. Alves, and J.C. Soares, Superlattices Microstruct. 39, 229 (2006).

    Article  ADS  CAS  Google Scholar 

  25. W.C.T. Lee, M. Henseler, P. Miller, C.H. Swartz, T.H. Myers, R.J. Reeves, and S.M. Durbin, J. Electron Mater. 35, 1316 (2006).

    Article  ADS  CAS  Google Scholar 

  26. X. Yang and N.C. Giles, J. Appl. Phys. 105, 063709 (2009).

    Article  ADS  CAS  Google Scholar 

  27. G.M. Gavaza, Z.G. Yu, and P. Wu, J. Appl. Phys. 105, 113711 (2009).

    Article  ADS  CAS  Google Scholar 

  28. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A.V. Rodina, Phys. Status Solidi B 241, 231 (2004).

    Article  ADS  CAS  Google Scholar 

  29. Y. Kanai, Jpn. J. Appl. Phys. 30, 2021 (1991).

    Article  ADS  CAS  Google Scholar 

  30. M. Schirra, R. Schneider, A. Reiser, G.M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C.E. Krill, R. Sauer, and K. Thonke, Phys. B (Amsterdam, Neth.) 401–402, 362 (2007).

    Google Scholar 

  31. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  MATH  ADS  CAS  Google Scholar 

  32. S.J. Xu, S.-J. Xiong, and S.L. Shi, J. Chem. Phys. 123, 221105 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  33. J. Jenny, R. Jones, J.E. Van Nostrand, D.C. Reynolds, D.C. Look, and B. Jogai, Solid State Commun. 106, 701 (1998).

    Article  ADS  Google Scholar 

  34. M.W. Allen and S.M. Durbin, Appl. Phys. Lett. 91, 053512 (2007).

    Article  ADS  CAS  Google Scholar 

  35. H. von Wenckstern, A. Lajn, A. Laufer, B.K. Meyer, H. Hochmuth, M. Lorenz, and M. Grundmann, AIP Conference Proceedings, in press (2009).

  36. H. Von Wenckstern, H. Schmidt, M. Grundmann, M.W. Allen, P. Miller, R.J. Reeves, and S.M. Durbin, Appl. Phys. Lett. 91, 022913 (2007).

    Article  ADS  CAS  Google Scholar 

  37. M.W. Allen and S.M. Durbin, Appl. Phys. Lett. 92, 103520 (2008).

    Google Scholar 

  38. K. Liu, B.F. Yang, H. Yan, Z. Fu, M. Wen, Y. Chen, and J. Zuo, Appl. Surf. Sci. 255, 2052 (2008).

    CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by Marsden Fund grant UOC0604, the University of Canterbury, the MacDiarmid Institute for Advanced Materials and Nanotechnology, and the New Zealand Tertiary Education Commission Doctoral Scholarship Programme (J.C.). Assistance from G. Turner, H. Devereux, M.W. Allen, and J. Partridge is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Durbin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, J., Mendelsberg, R.J., Reeves, R.J. et al. Identification of a Deep Acceptor Level in ZnO Due to Silver Doping. J. Electron. Mater. 39, 577–583 (2010). https://doi.org/10.1007/s11664-009-1025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-1025-7

Keywords

Navigation