Skip to main content
Log in

Characterization of Hydrogen Permeation in Armco-Fe during Cathodic Polarization in Aqueous Electrolytic Media

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The study of hydrogen permeation behavior in Armco-Fe showed that 0.1 M H2SO4 was a more effective medium for cathodic polarization compared to 0.1 M NaOH. When both electrolytes were “poisoned” with 1.00 g/L Na2HAsO4 · 7H2O, as hydrogen recombination inhibitor, the corresponding hydrogen permeation levels were 3.5 × 10−5 A/cm2 in 0.1 M H2SO4 while 0.75 × 10−5 A/cm2 in 0.1 M NaOH. The breakthrough times were less than 30 s in 0.1 M H2SO4, while about 100 s in the NaOH. With varying amounts of “poisons”, peak permeation of hydrogen (1.75 × 10−5 A/cm2) was achieved with 10 g/L Na2HAsO4 · 7H2O in 0.1 M H2SO4, while the least permeation resulted with 10 g/L (NH2CSH2) Thiourea addition for same level of 1.00 mA/cm2 cathodic polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Bodenstein, Diffusion of Cathode Hydrogen through Iron and Platinum, Z. Electrochem. 28, (1922) 517–526

    CAS  Google Scholar 

  2. A.R. Troiano Embrittelement by Hydrogen and Other Interstitials Metal Progress, 77(2) (1960), 112–117

    CAS  Google Scholar 

  3. R.P. Gangloff, Comprehensive Structural Integrity, vol. 6, I. Milne, R.O. Ritchie, and B. Ksrihalco, Eds. (New York, NY), Elsevier Science, 2003, p 31–101

  4. D. Li, R.P. Gangloff, J.R. Scully Hydrogen Trap in Ultrahigh-Strength AERMET 100 Steel, Metall. Mat. Trans. A, 35A, 2004, p 849–864

    Article  CAS  Google Scholar 

  5. V.S. Agarwala, D.A. Berman, and G. Kohlhaas, “Cause and Prevention of Structural Materials Failure in Naval Environments,” Paper 115, presented at CORROSION/84, (New Orleans, Louisiana, USA), 1984

  6. V.S. Agarwala, An In-situ Experimental Study of the Mechanisms of Catastrophic Damage Phenomena, Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, Eds., The Minerals, Metals & Materials Society, 1990, p 1033

  7. G.P. Tiwari, A. Bose, J.K. Chakravartty, S.L. Wadekar, M.K. Totlani, R.N. Arya, R.K. Fotedar, Study of Internal Hydrogen Embrittlement of Steels, Mater. Sci. Eng. A, 286, 2000, p 269–281

    Article  Google Scholar 

  8. M.R. Louthan Jr., R.G. Derrick, Hydrogen Transport in Austenitic Stainless Steels, Corros. Sci. 15(9), 1975, 565–577

    Article  CAS  Google Scholar 

  9. M.R. Louthan Jr., J.A. Donovan, G.R. Caskey Jr., Tritium Absorption in Type 304L Stainless Steel, Nucl. Technol., 26(2), 1975, 192–200

    CAS  Google Scholar 

  10. M.L. Holzworth, M.R. Louthan Jr., Hydrogen Induced Phase Transformations in Type 304L Stainless Steels, Corrosion, 24(4), 1968, 110–123

    CAS  Google Scholar 

  11. K. Kamachi, X-ray Study of Hydrides in Austenitic Stainless Steels, J. Soc. Mater. Sci. Jpn., 26(283), 1977, 322–328, in Japanese

    CAS  Google Scholar 

  12. P. Kedzierzawski, Z. Szklarska-Smialowska, M. Smialowski: Pulse Technique Employed for Studying Egress of Hydrogen from Iron Polarized Cathodically in As**3** Plus-containing Solutions, J. Electrochem. Soc., 127, 1980, 2550–2555

    Article  CAS  Google Scholar 

  13. K. Farrell, M.B. Lewis, The Hydrogen Content of Austenite After Cathodic Charging, Scripta Metall., 15, 1981, 661–664

    Article  CAS  Google Scholar 

  14. H. Hänninen, T. Hakkarainen, and P. Nenonen, Hydrogen Effects in Metals, J.M. Bernstein and A.W. Thompson, Eds., The Metallurgical Society of AIME, 1981, p 575–583

  15. M. Hoelzel, S.A. Danilkin, H. Ehrenberrg, D.M. Toebbens, T.J. Udovic, H. Fues, H. Wipf: Effects of High Pressure Hydrogen Charging on the Structure of Austenitic Stainless Steels, Mater. Sci. Eng. A, 384A, 2004, p 255–261

    Google Scholar 

  16. A.J. Kumnick, H.H. Johnson, Steady State Hydrogen Transport Through Zone Refined Irons, Metall. Trans A, 6A, 1975, 1087–1091

    CAS  Google Scholar 

  17. N.R. Moody, S.L. Robinson, S.M. Myers, F.A. Greulich, Deuterium Concentration Profiles in Fe-Ni-Co Alloys Electrochemically Charged at Room Temperature, Acta Metall., 37(1), 1989, 281–290

    Article  CAS  Google Scholar 

  18. S.L. Robinson, N.R. Moody, S.M. Myers, J.C. Farmer, F.A. Greulich, The Effects of Current Density and Recombination Poisons on Electrochemical Charging of Deuterium into an Iron-Base Superally, J. Electrochem. Soc., 137(5), 1990, 1391–1397

    Article  CAS  Google Scholar 

  19. O.N.C. Uwakweh, “Distribution des interstitiels dans les Alliages Fe-C; Cinetique isochrone au cours du vieillissement des Martensites et Transformation induite par Chargement electronique d’Hydogene,” Ph. D. Thesis, University of Nancy1 Nancy, France, 1990

  20. O.N.C. Uwakweh, J.M.R. Genin, J.F. Silvain, Hydrogen Charging of High Carbon Binary Steel and Martensitic Induced Transformation, Scripta Metall., 24(6), 1990, 1075–1079

    Article  CAS  Google Scholar 

  21. T.P Radhakrishnan, L.L. Shreir, Permeation of Hydrogen Through Steel by Electrochemical Transfer-1, Electrochim. Acta 11(8), 1966, 1007–1021

    Article  CAS  Google Scholar 

  22. J.F. Newman, L.L. Shreir, Role of Hydrides in Hydrogen Entry into Steel from Solution Containing Promoters, Corros. Sci., 9, 1969, 631–641

    Article  CAS  Google Scholar 

  23. R.D. McCright, R.W. Staehle, Effect of Arsenic Upon The Entry of Hydrogen Into Mild Steel as Determined at Constant Electrochemical Potential, J. Electrochem. Soc., 121(5), 1974, 609–618

    Article  CAS  Google Scholar 

  24. S.Y. Qian, B.E. Conway, G. Jerkiewicz, Kinetic Rationalization of Catalyst Poison Effect on Cathodic H Sorption into Metals: Relation of Enhanced and Inhibition to Coverage, J. Chem. Soc., Faraday Trans., 94, 1998, 2945–1954

    Article  CAS  Google Scholar 

  25. M.H. Abd Elhamid, B.G. Ateya, K.G. Weil, H.W. Pickering, Effect of Thiosulfate and Sulfite on the Permeation Rate of Hydrogen Through Iron, Corrosion, 57(5), 2001, 428–432

    Article  Google Scholar 

  26. V.S. Agarwala and J.J. DeLuccia, Effect of Magnetic Field on Hydrogen Evolution and its Diffusion in Iron and Steel, Proceeding of the 7th Int. Cong. On Metallic Corrosion (Brasil) Hotel National/Rio de Janeiro, 1978, p 795–805

  27. W.W. Gerberich, T. Livne, X.-F. Chen, M. Kaczorowski, Crack Growth from Internal Hydrogen-Temperature and Microstructural Effects in 4340 Steel, Metall. Trans. A, 19A, 1988, 1310–1934

    Google Scholar 

  28. J. Barber, B.E. Conway: Structural Specificity of the Kinetics of the Hydrogen Evolution Reaction on the Low Index Surfaces of Pt Single-Crystal Electrodes in 0.5 m dm−3 NaOH, J. Electroanal. Chem., 461(1-2), 1990, 80–89

    Article  Google Scholar 

  29. S.M. Charca, “Study of Hydrogen Permeation and Diffusion in Steels: Predictive Model for Hydrogen Concentration,” Master of Science Thesis, Department of Mechanical Engineering, University of Puerto Rico – Mayagüez, 2005

  30. M.A.V. Devanathan and Z.O.J. Stachurski, The Adsorption and Diffusion of Electrolytic Hydrogen in Palladium, Proc. Roy. Soc. Lond. Ser. A, 1962, A270(1340), p 90–102

  31. M.A.V. Devanathan, Z. Stachurski, W. Beck, A Technique for the Evaluation of Hydrogen Embrittlement Characteristics of Electroplating Baths, J. Electrochem. Soc., 110(8), 1963, 886–890

    Article  CAS  Google Scholar 

  32. M.A.V. Devanathan, S. Venkatesen, Method for Measuring Hydrogen Permeation of Metals and its Application to Metal Finishing, Int. Confer. Electrodepos. Metal Finish., 42, 1964, 123–128

    Google Scholar 

  33. J.J. DeLuccia, Electrochemical Aspects of Hydrogen in Metals: Hydrogen Embrittlement: Prevention and Control, ASTM STP 962, L. Raymond, Ed. (Philadelphia), American Society for Testing and Materials, 1988, p 17–34

  34. ASTM G 148: Standard Practice for Evaluation of Hydrogen Uptake, Permeation, and Transport in Metals by an Electrochemical Technique

  35. J.O’M. Bockris, J. McBreen, L. Nanis, The Hydrogen Evolution Kinetics and Hydrogen Entry into α-iron, J. Electrochem. Soc., 112(101), 1965, 1025–1031

    Article  CAS  Google Scholar 

  36. T. Zakroczymski, Electrochemical Determination of Hydrogen in Metals, J. Electroanal. Chem., 475, 1999, 82–88

    Article  CAS  Google Scholar 

  37. J. Flis, T. Zakroczymski, V. Kleshnya, T. Kobiela, R. Dus: Changes in Hydrogen Entry and in Surface of Iron during Cathodic Polarisation in Alkaline, Electrochim. Acta, 44(23), 1999, 3989–3997

    Article  CAS  Google Scholar 

  38. E. Owczarek, T. Zakroczymski, Hydrogen Transport in Duplex Stainless Steel, Acta, 48(12), 2000, 3059–3070

    CAS  Google Scholar 

  39. Nace technical report: Item No. 24185, NACE International Publication 8X294 (2003 Edition)

Download references

Acknowledgment

The authors, ONCU and BS would like to acknowledge support of ASEE through Summer Faculty program at different times, and also wishes to acknowledge the support of Dr. Yapa Rajapakse, the program manager of ONR-grant # N000140310540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswald N.C. Uwakweh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charca, S.M., Uwakweh, O.N., Shafiq, B. et al. Characterization of Hydrogen Permeation in Armco-Fe during Cathodic Polarization in Aqueous Electrolytic Media. J. of Materi Eng and Perform 17, 127–133 (2008). https://doi.org/10.1007/s11665-007-9114-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9114-3

Keywords

Navigation