Skip to main content
Log in

Neurobiologie de l’anorexie inflammatoire

Neurobiology of inflammation-associated anorexia

  • Article Original / Original Article
  • Published:
Obésité

Résumé

Les cytokines inflammatoires jouent un rôle prépondérant dans l’anorexie inflammatoire observée lors d’une infection périphérique et chez l’individu cancéreux. Cet article explique les mécanismes d’action des cytokines inflammatoires sur le comportement de prise alimentaire. Les cytokines inflammatoires stimulent l’activité du système nerveux périphérique et induisent la synthèse de facteurs pro-inflammatoires au sein du cerveau. Un circuit neuronal spécifiquement impliqué dans la régulation de la prise alimentaire est recruté en réponse à l’action des cytokines sur le cerveau. L’activité de ce circuit neuronal est modulée par de nombreux facteurs hormonaux et environnementaux par l’intermédiaire du système à mélanocortine. La connaissance des mécanismes neurobiologiques qui sous-tendent l’anorexie inflammatoire permet d’envisager de nouveaux traitements pour stimuler l’appétit des patients cancéreux.

Abstract

Cytokines play a key role in mediating inflammation-associated anorexia. Compelling data demonstrate that cytokines can stimulate the activity of the peripheral nervous system and induce de novo synthesis of pro-inflammatory factors in the brain. It results in the stimulation of a specific neural circuit that reduces food intake. The melanocortinergic pathway tightly regulates the activity of this neural circuit upon humoral and environmental changes. Identifying the mechanisms underlying inflammation-associated anorexia is a true challenge geared toward the fight against loss of appetite in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Langhans W, Savoldelli D, Weingarten S (1993) Comparison of the feeding responses to bacterial lipopolysaccharide and interleukin-1 beta. Physiol Behav 53(4):643–649

    Article  PubMed  CAS  Google Scholar 

  2. Layé S, Gheusi G, Cremona S, et al (2000) Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression. Am J Physiol 279(1):R93–R98

    Google Scholar 

  3. Aubert A, Dantzer R (2005) The taste of sickness: lipopolysaccharide-induced finickiness in rats. Physiol Behav 84(3):437–444

    Article  PubMed  CAS  Google Scholar 

  4. Hart BL (1988) Biological basis of the behavior of sick animals. Neurosci Biobehav Rev 12(2):123–137

    Article  PubMed  CAS  Google Scholar 

  5. Exton MS (1997) Infection-induced anorexia: active host defence strategy. Appetite 29(3):369–383

    Article  PubMed  CAS  Google Scholar 

  6. Mattox TW (2005) Treatment of unintentional weight loss in patients with cancer. Nutr Clin Pract 20(4):400–410

    Article  PubMed  Google Scholar 

  7. Seruga B, Zhang H, Bernstein LJ, Tannock IF (2008) Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8(11):8878–8899

    Article  Google Scholar 

  8. Bernstein IL (1995) Neural mediation of food aversions and anorexia induced by tumor necrosis factor and tumors. Neurosci Biobehav Rev 20(1):177–181

    Article  Google Scholar 

  9. Goehler LE, Relton JK, Dripps D, et al (1997) Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull 43(3):357–364

    Article  PubMed  CAS  Google Scholar 

  10. Ek M, Kurosawa M, Lundeberg T, Ericsson A (1998) Activation of vagal afferents after intravenous injection of interleukin-1 beta: role of endogenous prostaglandins. J Neurosci 18(22):9471–9479

    PubMed  CAS  Google Scholar 

  11. Niijima A (1996) The afferent discharges from sensors for interleukin-1 beta in the hepatoportal system in the anesthetized rat. J Auton Nerv Syst 61(3):287–291

    Article  PubMed  CAS  Google Scholar 

  12. Bret-Dibat JL, Bluthé RM, Kent S, et al (1995) Lipopolysaccharide and interleukin-1 depress food-motivated behavior in mice by a vagal-mediated mechanism. Brain Behav Immun 9(3):242–246

    Article  PubMed  CAS  Google Scholar 

  13. Sergeev VG, Akmaev IG (2000) Effects of vagotomy and bacterial lipopolysaccharide on food intake and expression of cyclooxygenase-2 mRNA in rat brain vessels. Bull Exp Biol Med 129(6):553–555

    Article  PubMed  CAS  Google Scholar 

  14. Goehler LE, Busch CR, Tartaglia N, et al (1995) Blockade of cytokine induced conditioned taste aversion by subdiaphragmatic vagotomy: further evidence for vagal mediation of immune-brain communication. Neurosci Lett 185(3):163–166

    Article  PubMed  CAS  Google Scholar 

  15. Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384(6609):560–564

    Article  PubMed  CAS  Google Scholar 

  16. Watkins LR, Hutchinson MR, Milligan ED, Maier SF (2007) “Listening” and “talking” to neurons: implications of immune activation for pain control and increasing the efficacy of opioids. Brain Res Rev 56(1):148–169

    Article  PubMed  CAS  Google Scholar 

  17. Malick A, Jakubowski M, Elmquist JK, et al (2001) A neurohistochemical blueprint for pain-induced loss of appetite. Proc Natl Acad Sci USA 98(17):9930–9935

    Article  PubMed  CAS  Google Scholar 

  18. Lin HC, Wan FJ, Kang BH, et al (1999) Systemic administration of lipopolysaccharide induces release of nitric oxide and glutamate and c-Fos expression in the nucleus tractus solitarii of rats. Hypertension 33(5):1218–1224

    PubMed  CAS  Google Scholar 

  19. Elmquist JK, Scammell TE, Jacobson CD, Saper CB (1996) Distribution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J Comp Neurol 371(1):85–103

    Article  PubMed  CAS  Google Scholar 

  20. Konsman JP, Luheshi GN, Bluthé RM, Dantzer R (2000) The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur J Neurosci 12(12):4434–4446

    Article  PubMed  CAS  Google Scholar 

  21. Konsman JP, Blomqvist A (2005) Forebrain patterns of c-Fos and FosB induction during cancer-associated anorexia-cachexia in rat. Eur J Neurosci 21(10):2752–2766

    Article  PubMed  Google Scholar 

  22. Kent S, Bluthé RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13(1):24–28

    Article  PubMed  CAS  Google Scholar 

  23. Plata-Salamán CR, Sonti G, Borkoski JP, et al (1996) Anorexia induced by chronic central administration of cytokines at estimated pathophysiological concentrations. Physiol Behav 60(3):867–875

    Article  PubMed  Google Scholar 

  24. Rivest S (2003) Molecular insights on the cerebral innate immune system. Brain Behav Immun 17(1):13–19

    Article  PubMed  CAS  Google Scholar 

  25. Layé S, Parnet P, Goujon E, Dantzer R (1994) Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res Mol Brain Res 27(1):157–162

    Article  PubMed  Google Scholar 

  26. Van Dam AM, Bauer J, Tilders FJ, Berkenbosch F (1995) Endotoxin-induced appearance of immunoreactive interleukin-1 beta in ramified microglia in rat brain: a light and electron microscopic study. Neuroscience 65(3):815–826

    Article  PubMed  Google Scholar 

  27. Goehler LE, Erisir A, Gaykema RP (2006) Neural-immune interface in the rat area postrema. Neuroscience 140(4):1415–1434

    Article  PubMed  CAS  Google Scholar 

  28. Ericsson A, Liu C, Hart RP, Sawchenko PE (1995) Type 1 interleukin-1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL-1-induced cellular activation. J Comp Neurol 361(4):681–698

    Article  PubMed  CAS  Google Scholar 

  29. Konsman JP, Vigues S, Mackerlova L, et al (2004) Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J Comp Neurol 472(1):113–129

    Article  PubMed  Google Scholar 

  30. Ching S, Zhang H, Belevych N, et al (2007) Endothelial-specific knockdown of interleukin-1 (IL-1) type 1 receptor differentially alters CNS responses to IL-1 depending on its route of administration. J Neurosci 27(39):10476–10486

    Article  PubMed  CAS  Google Scholar 

  31. Gosselin D, Rivest S (2008) MyD88 signaling in brain endothelial cells is essential for the neuronal activity and glucocorticoid release during systemic inflammation. Mol Psychiatry 13(5):480–497

    Article  PubMed  CAS  Google Scholar 

  32. Wisse BE, Ogimoto K, Tang J, et al (2007) Evidence that lipopolysaccharide-induced anorexia depends upon central, rather than peripheral, inflammatory signals. Endocrinology 148(11): 5230–5237

    Article  PubMed  CAS  Google Scholar 

  33. Nadjar A, Bluthé RM, May MJ, et al (2005) Inactivation of the cerebral NFkappaB pathway inhibits interleukin-1 beta-induced sickness behavior and c-Fos expression in various brain nuclei. Neuropsychopharmacology 30(8):1492–1499

    Article  PubMed  CAS  Google Scholar 

  34. Johnson PM, Vogt SK, Burney MW, Muglia LJ (2002) COX-2 inhibition attenuates anorexia during systemic inflammation without impairing cytokine production. Am J Physiol 282(3): E650–E656

    CAS  Google Scholar 

  35. Lugarini F, Hrupka BJ, Schwartz GJ, et al (2002) A role for cyclooxygenase-2 in lipopolysaccharide-induced anorexia in rats. Am J Physiol 283(4):R862–R868

    CAS  Google Scholar 

  36. Pecchi E, Dallaporta M, Thirion S, et al (2006) Involvement of central microsomal prostaglandin E synthase-1 in IL-1beta-induced anorexia. Physiol Genomics 25(3):485–492

    Article  PubMed  CAS  Google Scholar 

  37. Elander L, Engström L, Hallbeck M, Blomqvist A (2007) IL-1beta and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1. Am J Physiol 292(1):R258–R267

    CAS  Google Scholar 

  38. Zhang J, Rivest S (1999) Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci 11(8):2651–2668

    Article  PubMed  CAS  Google Scholar 

  39. Marty V, El Hachmane M, Amédée T (2008) Dual modulation of synaptic transmission in the nucleus tractus solitarius by prostaglandin E2 synthesized downstream of IL-1beta. Eur J Neurosci 27(12):3132–3150

    Article  PubMed  Google Scholar 

  40. Schwartz GJ (2002) Neural-immune gut-brain communication in the anorexia of disease. Nutrition 18(6):528–533

    Article  PubMed  CAS  Google Scholar 

  41. DeBoer MD, Scarlett JM, Levasseur PR, et al (2009) Administration of IL-1beta to the 4th ventricle causes anorexia that is blocked by agouti-related peptide and that coincides with activation of tyrosine-hydroxylase neurons in the nucleus of the solitary tract. Peptides 30(2):210–218

    Article  PubMed  CAS  Google Scholar 

  42. Rinaman L (1999) Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am J Physiol 277(2 Pt 2):R582–R590

    PubMed  CAS  Google Scholar 

  43. Grill HJ, Carmody JS, Amanda Sadacca L, et al (2004) Attenuation of lipopolysaccharide anorexia by antagonism of caudal brain stem but not forebrain GLP-1-R. Am J Physiol 287(5):R1190–R1193

    CAS  Google Scholar 

  44. Ericsson A, Kovács KJ, Sawchenko PE (1994) A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J Neurosci 14(2):897–913

    PubMed  CAS  Google Scholar 

  45. Buller KM, Day TA (2002) Systemic administration of interleukin-1beta activates select populations of central amygdala afferents. J Comp Neurol 452(3):288–296

    Article  PubMed  Google Scholar 

  46. Gaykema RP, Chen CC, Goehler LE (2007) Organization of immune-responsive medullary projections to the bed nucleus of the stria terminalis, central amygdala, and paraventricular nucleus of the hypothalamus: evidence for parallel viscerosensory pathways in the rat brain. Brain Res 1130(1):130–145

    Article  PubMed  CAS  Google Scholar 

  47. Gautron L, Mingam R, Moranis A, et al (2005) Influence of feeding status on neuronal activity in the hypothalamus during lipopolysaccharide-induced anorexia in rats. Neuroscience 134(3):933–946

    Article  PubMed  CAS  Google Scholar 

  48. Rivest S, Laflamme N (1995) Neuronal activity and neuropeptide gene transcription in the brains of immune-challenged rats. J Neuroendocrinol 7(7):501–525

    Article  PubMed  CAS  Google Scholar 

  49. Uehara A, Sekiya C, Takasugi Y, et al (1989) Anorexia induced by interleukin 1: involvement of corticotropin-releasing factor. Am J Physiol 257(3 Pt 2):R613–R617

    PubMed  CAS  Google Scholar 

  50. Füzesi T, Sánchez E, Wittmann G, et al (2008) Regulation of cocaine- and amphetamine-regulated transcript-synthesising neurons of the hypothalamic paraventricular nucleus by endotoxin; implications for lipopolysaccharide-induced regulation of energy homeostasis. J Neuroendocrinol 20(9):1058–1066

    Article  PubMed  Google Scholar 

  51. Becskei C, Riediger T, Hernádfalvy N, et al (2008) Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake. Brain Behav Immun 22(1):56–64

    Article  PubMed  CAS  Google Scholar 

  52. Park SM, Gaykema RP, Goehler LE (2008) How does immune challenge inhibit ingestion of palatable food? Evidence that systemic lipopolysaccharide treatment modulates key nodal points of feeding neurocircuitry. Brain Behav Immun (sous presse)

  53. Borowski T, Kokkinidis L, Merali Z, Anisman H (1998) Lipopolysaccharide, central in vivo biogenic amine variations, and anhedonia. Neuroreport 9(17):3797–3802

    Article  PubMed  CAS  Google Scholar 

  54. Baldo BA, Gual-Bonilla L, Sijapati K, et al (2004) Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur J Neurosci 19(2):376–386

    Article  PubMed  Google Scholar 

  55. Elmquist JK (2001) Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav 74(4–5):703–708

    Article  PubMed  CAS  Google Scholar 

  56. Uehara Y, Shimizu H, Sato N, et al (1992) Carboxyl-terminal tripeptide of alpha-melanocyte-stimulating hormone antagonizes interleukin-1-induced anorexia. Eur J Pharmacol 220(2–3):119–122

    PubMed  CAS  Google Scholar 

  57. Huang QH, Hruby VJ, Tatro JB (1999) Role of central melanocortins in endotoxin-induced anorexia. Am J Physiol 276(3 Pt 2): R864–R871

    PubMed  CAS  Google Scholar 

  58. Reyes TN, Sawchenko PE (2002) Involvement of the arcuate nucleus of the hypothalamus in interleukin-1-induced anorexia. J Neurosci 22(12):5091–5099

    PubMed  CAS  Google Scholar 

  59. Scarlett JM, Jobst EE, Enriori PJ, et al (2007) Regulation of central melanocortin signaling by interleukin-1 beta. Endocrinology 148(9):4217–4225

    Article  PubMed  CAS  Google Scholar 

  60. Sergeyev V, Broberger C, Hökfelt T (2001) Effect of LPS administration on the expression of POMC, NPY, galanin, CART and MCH mRNAs in the rat hypothalamus. Brain Res Mol Brain Res 90(2):93–100

    Article  PubMed  CAS  Google Scholar 

  61. Borges BC, Antunes-Rodrigues J, Castro M, et al (2007) Expression of hypothalamic neuropeptides and the desensitization of pituitary-adrenal axis and hypophagia in the endotoxin tolerance. Horm Behav 52(4):508–519

    Article  PubMed  CAS  Google Scholar 

  62. Gayle D, Ilyin SE, Plata-Salamán CR (1999) Feeding status and bacterial LPS-induced cytokine and neuropeptide gene expression in hypothalamus. Am J Physiol 277(4 Pt 2):R1188–R1195

    PubMed  CAS  Google Scholar 

  63. Sarraf P, Frederich RC, Turner EM, et al (1997) Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med 185(1):171–175

    Article  PubMed  CAS  Google Scholar 

  64. Faggioni R, Fantuzzi G, Fuller J, et al (1998) IL-1beta mediates leptin induction during inflammation. Am J Physiol 274(1 Pt 2): R204–R208

    PubMed  CAS  Google Scholar 

  65. Hill JW, Williams KW, Ye C, et al (2008) Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest 118(5):1796–1805

    Article  PubMed  CAS  Google Scholar 

  66. Faggioni R, Fuller J, Moser A, et al (1997) LPS-induced anorexia in leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mice. Am J Physiol 273(1 Pt 2):R181–R186

    PubMed  CAS  Google Scholar 

  67. Lugarini F, Hrupka BJ, Schwartz GJ, et al (2005) Acute and chronic administration of immunomodulators induces anorexia in Zucker rats. Physiol Behav 84(1):165–173

    Article  PubMed  CAS  Google Scholar 

  68. Giovambattista A, Chisari AN, Corró L, et al (2000) Metabolic, neuroendocrine and immune functions in basal conditions and during the acute-phase response to endotoxic shock in undernourished rats. Neuroimmunomodulation 7(2):92–98

    Article  PubMed  CAS  Google Scholar 

  69. Spencer SJ, Mouihate A, Galic MA, et al (2007) Neonatal immune challenge does not affect body weight regulation in rats. Am J Physiol 293(2):R581–R589

    CAS  Google Scholar 

  70. Sachot C, Rummel C, Bristow AF, Luheshi GN (2007) The role of the vagus nerve in mediating the long-term anorectic effects of leptin. J Neuroendocrinol 19(4):250–261

    Article  PubMed  CAS  Google Scholar 

  71. Liu J, Garza JC, Truong HV, et al (2007) The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology 148(11):5531–5540

    Article  PubMed  CAS  Google Scholar 

  72. Shimizu N, Oomura Y, Kai Y (1989) Stress-induced anorexia in rats mediated by serotonergic mechanisms in the hypothalamus. Physiol Behav 46(5):835–841

    Article  PubMed  CAS  Google Scholar 

  73. Heisler LK, Cowley MA, Tecott LH, et al (2002) Activation of central melanocortin pathways by fenfluramine. Science 297(5581):609–611

    Article  PubMed  CAS  Google Scholar 

  74. MohanKumar SM, MohanKumar PS, Quadri SK (1999) Lipopolysaccharide-induced changes in monoamines in specific areas of the brain: blockade by interleukin-1 receptor antagonist. Brain Res 824(2):232–237

    Article  PubMed  CAS  Google Scholar 

  75. Nolan Y, Connor TJ, Kelly JP, Leonard BE (2000) Lipopolysaccharide administration produces time-dependent and regionspecific alterations in tryptophan and tyrosine hydroxylase activities in rat brain. J Neural Transm 107(12):1393–1401

    Article  PubMed  CAS  Google Scholar 

  76. von Meyenburg C, Langhans W, Hrupka BJ (2003) Evidence for a role of the 5-HT-2C receptor in central lipopolysaccharide-, interleukin-1 beta-, and leptin-induced anorexia. Pharmacol Biochem Behav 74(4):1025–1031

    Article  Google Scholar 

  77. Asarian L, Kopf BS, Geary N, Langhans W (2007) Pharmacological, but not genetic, disruptions in 5-HT-(2C) receptor function attenuate LPS anorexia in mice. Pharmacol Biochem Behav 86(3):493–498

    Article  PubMed  CAS  Google Scholar 

  78. Porter MH, Hrupka BJ, Langhans W, Schwartz GJ (1998) Vagal and splanchnic afferents are not necessary for the anorexia produced by peripheral IL-1beta, LPS, and MDP. Am J Physiol 275(2 Pt 2):R384–R389

    PubMed  CAS  Google Scholar 

  79. Quan N (2008) Immune-to-brain signaling: how important are the blood-brain barrier-independent pathways? Mol Neurobiol 37(2–3):142–152

    Article  PubMed  CAS  Google Scholar 

  80. Wisse BE, Frayo RS, Schwartz MW, Cummings DE (2001) Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology 142(8):3292–3301

    Article  PubMed  CAS  Google Scholar 

  81. Cheung WW, Kuo HJ, Markison S, et al (2007) Peripheral administration of the melanocortin-4 receptor antagonist NBI-12i ameliorates uremia-associated cachexia in mice. J Am Soc Nephrol 18(9):2517–2524

    Article  PubMed  CAS  Google Scholar 

  82. Neary NM, Small CJ, Wren AM, et al (2004) Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab 89(6):2832–2836

    Article  PubMed  CAS  Google Scholar 

  83. Mingam R, Moranis A, Bluthé RM, et al (2008) Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur J Neurosci 28(9):1877–1886

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gautron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautron, L., Layé, S. Neurobiologie de l’anorexie inflammatoire. Obes 6, 105–113 (2011). https://doi.org/10.1007/s11690-011-0278-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-011-0278-5

Mots clés

Keywords

Navigation