Skip to main content
Log in

Influence of parameter values on the oscillation sensitivities of two p53–Mdm2 models

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Gen 8:450–461

    Article  CAS  Google Scholar 

  • Ananthasubramaniam B, Herzel H (2014) Positive feedback promotes oscillations in negative feedback loops. PLoS ONE 9(8):e104,761

    Article  Google Scholar 

  • Atkinson M, Savageau M, Myers J, Ninfa A (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 8:597–607

    Article  Google Scholar 

  • Batchelor E, Mock C, Bhan I, Loewer A, Lahav G (2008) Recurrent initiation: a mechanism for triggering p53 pulses in response to dna damage. Mol Cell 30:277–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chickarmane V, Ray A, Sauro H, Nadim A (2007) A model for p53 dynamics triggered by dna damage. SIAM J Appl Dyn Syst 6:61–78

    Article  Google Scholar 

  • Clewley R, Sherwood W, LaMar M, Guckenheimer J (2007) Pydstool, a software environment for dynamical systems modeling. URL:http://pydstool.sourceforge.net

  • Conrad E, Mayo A, Ninfa A, Forger D (2008) Rate constants rather than biochemical mechanism determine behaviour of genetic clocks. J R Soc Interface 5:S9–S15

    Article  PubMed Central  PubMed  Google Scholar 

  • Franco E, Friedrichs E, Kim J, Jungmannb R, Murray R, Winfree E, Simmel F (2011) Timing molecular motion and production with a synthetic transcriptional clock. Proc Natl Acad Sci USA 108:E784–E793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, G GL, Alon U (2006) Oscillations and variability in the p53 system. Mol Syst Biol 2:0033

    Article  PubMed  Google Scholar 

  • Ingalls S, Sauro H (2003) Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J Theor Biol 222:23–36

    Article  PubMed  Google Scholar 

  • Jolma I, Ni X, Rensing L, Ruoff P (2010) Harmonic oscillations in homeostatic controllers: dynamics of the p53 regulatory system. Biophys J 98:743–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaizu K, Ghosh S, Matsuoka Y, Moriya H, Shimizu-Yoshida Y, Kitano H (2010) A comprehensive molecular interaction map of the budding yeast cell cycle. Mol Syst Biol 6:415

    Article  PubMed Central  PubMed  Google Scholar 

  • Khalil A, Collins J (2010) Synthetic biology: applications come of age. Nat Rev Gen 11:367–379

    Article  CAS  Google Scholar 

  • Kim J, Winfree E (2011) Synthetic in vitro transcriptional oscillators. Mol Syst Biol 7:465

    Article  PubMed Central  PubMed  Google Scholar 

  • Kohn K, Pommier Y (2005) Molecular interaction map of the p53 and mdm2 logic elements, which control the offon switch of p53 in response to dna damage. Biochem Biophys Res Commun 331:816–827

    Article  CAS  PubMed  Google Scholar 

  • Kramer M, Rabitz H, Calo J (1984) Sensitivity analysis of oscillatory systems. Appl Math Model 8:328–340

    Article  Google Scholar 

  • Leloup J, Goldbeter A (2004) Modeling the mammalian circadian clock: sensitivity analysis and multiplicity of oscillatory mechanisms. Theor Biol 230:541–562

    Article  Google Scholar 

  • Levine A, Hu W, Feng Z (2006) The p53 pathway: what questions remain to be explored? Cell Death Differ 13:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Myat G (2007) Making sense of data: a practical guide to exploratory data analysis and data mining. Wiley-Interscience, New Jersey

    Book  Google Scholar 

  • Novak B, Tyson J (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9:981–991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potapov I, Volkov E, Kuznetsov A (2011) Dynamics of coupled repressilators: the role of mrna kinetics and transcription cooperativity. Phys Rev E 83(031):901

    Google Scholar 

  • Prindle A, Selimkhanov J, Li H, Razinkov I, Tsimring L, Hasty J (2014) Rapid and tunable post-translational coupling of genetic circuits. Nature 508:387–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prives C (1998) Signalling to p53: breaking the mdm2-p53 circuit. Biophys J 95:5–8

    CAS  Google Scholar 

  • Purcell O, Savery N, Grierson C, di Bernardo M (2010) A comparative analysis of synthetic genetic oscillators. J R Soc Interface 7:1503–1524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sneppen K, Krishna S, Semsey S (2010) Simplified models of biological networks. Annu Rev Biophys 39:43–59

    Article  CAS  PubMed  Google Scholar 

  • Stommel J, Wahl G (2004) Accelerated mdm2 auto-degradation induced by dna damage kinases is required for p53 activation. EMBO J 23:1547–1556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stricker J, Cookson S, Bennett M, Mather W, Tsimring L, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456:516–519

    Article  CAS  PubMed  Google Scholar 

  • Taylor S, Gunawan R, Petzold L, Doyle F (2008) Sensitivity measures for oscillating systems: application to mammalian circadian gene network. IEEE Trans Automat Contr 53:177–188

    Article  PubMed Central  PubMed  Google Scholar 

  • Tiana G, Krishna S, Pigolotti S, Jensen M, Sneppen K (2007) Oscillations and temporal signalling in cells. Phys Biol 4:R1–R17

    Article  CAS  PubMed  Google Scholar 

  • Tigges M, Marquez-Lago T, Stelling J, Fussenegger M (2009) A tunable synthetic mammalian oscillator. Nature 457:309–312

    Article  CAS  PubMed  Google Scholar 

  • Tsai T, Choi Y, Ma W, Pomerening J, Tang C, Ferrell JJ (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321:126–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weitz M, Kim J, Kapsner K, Winfree E, Franco E, Simmel F (2014) Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat Chem 6:295–302

    Article  CAS  PubMed  Google Scholar 

  • Wilcox R (2010) Fundamentals of modern statistical methods: substantially improving power and accuracy. Springer, New York

    Book  Google Scholar 

  • Wilkins A, Barton PI, Tidor B (2007) The per2 negative feedback loop sets the period in the mammalian circadian clock mechanism. PLoS Comput Biol 3:2476–2486

    Article  CAS  Google Scholar 

  • Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter R, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcriptiionregulation and proteinprotein interaction. Proc Natl Acad Sci USA 101:5934–5939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Y, Stephen C, Luciani M, Faahraeus R (2002) p53 stability and activity is regulated by mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 4:462–467

    Article  CAS  PubMed  Google Scholar 

  • Zhang E, Kay S (2010) Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 11:764–776

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Brazhnik P, Tyson J (2007) Exploring mechanisms of the dna-damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle 6:85–94

    Article  PubMed  Google Scholar 

  • Zhang X, Lui F, Cheng Z, Wang W (2009) Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci USA 106:12,245–12,250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the generous funding and support of Instituto de Investigación de Facultad de Ingeniería Mecánica (INIFIM), Instituto General de Investigación (IGI), Centro de Tecnologías de Información y Comunicaciones (CTIC), de la Universidad Nacional de Ingeniería (UNI), Lima, Perú.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth R. Villota.

Additional information

Christian E. Cuba and Alexander R. Valle have contributed equally to this work. The model herein proposed was developed by A. R. Valle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 273 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuba, C.E., Valle, A.R., Ayala-Charca, G. et al. Influence of parameter values on the oscillation sensitivities of two p53–Mdm2 models. Syst Synth Biol 9, 77–84 (2015). https://doi.org/10.1007/s11693-015-9173-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-015-9173-y

Keywords

Navigation