Skip to main content
Log in

The role of prior in image based 3D modeling: a survey

  • Review Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

The prior knowledge is the significant supplement to image-based 3D modeling algorithms for refining the fragile consistency-based stereo. In this paper, we review the image-based 3D modeling problem according to prior categories, i.e., classical priors and specific priors. The classical priors including smoothness, silhouette and illumination are well studied for improving the accuracy and robustness of the 3D reconstruction. In recent years, various specific priors which take advantage of Manhattan rule, geometry template and trained category features have been proposed to enhance the modeling performance. The advantages and limitations of both kinds of priors are discussed and evaluated in the paper. Finally, we discuss the trend and challenges of the prior studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dyer C R. Volumetric scene reconstruction from multiple views. Foundations of Image Understanding, 2001, 628: 469–489

    Article  MathSciNet  MATH  Google Scholar 

  2. Slabaugh G, Schafer R, Malzbender T, Culbertson B. A survey of methods for volumetric scene reconstruction from photographs. In: Proceedings of the Joint IEEE TCVG and Eurographics Workshop in Stony Brook. 2010, 81–100

    Google Scholar 

  3. Seitz S M, Curless B, Diebel J, Scharstein D, Szeliski R. A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2006, 519–528

    Google Scholar 

  4. Brenner C. Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation, 2005, 6(3): 187–198

    Article  Google Scholar 

  5. Newcombe R A, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison A J, Kohi P, Shotton J, Hodges S, Fitzgibbon A. KinectFusion: realtime dense surface mapping and tracking. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality. 2011, 127–136

    Google Scholar 

  6. Izadi S, Kim D, Hilliges O, Molyneaux D, Newcombe R, Kohli P, Shotton J, Hodges S, Freeman D, Davison A, Fitzgibbon A. Kinect-Fusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the ACM Symposium on User Interface Software and Technology. 2011, 559–568

    Google Scholar 

  7. Scharstein D, Szeliski R, Hirschmüller H. Stereo. http://vision.middlebury.edu/stereo/, 2015

    MATH  Google Scholar 

  8. Huang T S, Netravali A N. Motion and structure from feature correspondences: a review. Proceedings of the IEEE, 1994, 82(2): 252–268

    Article  Google Scholar 

  9. Oliensis J. A critique of structure-from-motion algorithms. Computer Vision and Image Understanding, 2000, 80(2): 172–214

    Article  MATH  Google Scholar 

  10. Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110

    Article  Google Scholar 

  11. Durrant-Whyte H, Bailey T. Simultaneous localization and mapping. IEEE Robotics & Automation Magazine, 2006, 13(2): 99–110

    Article  Google Scholar 

  12. Williams B, Klein G, Reid I. Real-time SLAMrelocalisation. In: Proceedings of the 11th IEEE International Conference on Computer Vision. 2007, 1–8

    Google Scholar 

  13. Newcombe R A, Lovegrove S J, Davison A J. DTAM: dense tracking and mapping in real-time. In: Proceedings of the IEEE International Conference on Computer Vision. 2011, 2320–2327

    Google Scholar 

  14. Tan W, Liu H M, Dong Z L, Zhang G F, Bao H J. Robust monocular SLAM in dynamic environments. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality. 2013, 209–218

    Google Scholar 

  15. Zhang R, Tsai P S, Cryer J E, Shah M. Shape-from-shading: a survey. IEEE Transactions on Pattern Analysis andMachine Intelligence, 1999, 21(8): 690–706

    Article  MATH  Google Scholar 

  16. Woodham R J. Photometric method for determining surface orientation from multiple images. Optical Engineering, 1980, 19(1): 1–22

    Article  Google Scholar 

  17. Bartoli A, Gerard Y, Chadebecq F, Collins T, Pizarro D. The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 2099–2118

    Article  Google Scholar 

  18. Laurentini A. The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(2): 150–162

    Article  Google Scholar 

  19. Lee W, Woo W, Boyer E. Silhouette segmentation in multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(7): 1429–1441

    Article  Google Scholar 

  20. Tao H, Sawhney H S, Kumar R. A global matching framework for stereo computation. In: Proceedings of the 8th IEEE International Conference on Computer Vision. 2001, 532–539

    Google Scholar 

  21. Bleyer M, Gelautz M. A layered stereo algorithm using image segmentation and global visibility constraints. In: Proceedings of the IEEE International Conference on Image Processing. 2004, 2997–3000

    Google Scholar 

  22. Hong L, Chen G. Segment-based stereo matching using graph cuts. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 74–81

    Google Scholar 

  23. Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: Proceedings of the 18th IEEE International Conference on Pattern Recognition. 2006, 15–18

    Google Scholar 

  24. Yang Q X, Wang L, Yang R G, Stewénius H, Nistér D. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 492–504

    Article  Google Scholar 

  25. Scharstein D, Szeliski R. A taxonomy and evaluation of dense twoframe stereo correspondence algorithms. International Journal of Computer Vision, 2002, 47(1–3): 7–42

    Google Scholar 

  26. Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1362–1376

    Article  Google Scholar 

  27. Beeler T, Bickel B, Beardsley P, Sumner B, Gross M. High-quality single-shot capture of facial geometry. ACM Transactions on Graphics, 2010, 29(4): 40

    Article  Google Scholar 

  28. Kolev K, Klodt M, Brox T, Esedoglu S, Cremers D. Continuous global optimization in multiview 3D reconstruction. International Journal of Computer Vision, 2009, 84(1): 80–96

    Article  Google Scholar 

  29. Liu Y B, Cao X, Dai Q H, Xu W L. Continuous depth estimation for multi-view stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2009, 2121–2128

    Google Scholar 

  30. Yao Y, Zhu H, Nie Y M, Ji X L, Cao X. Revised depth map estimation for multi-view stereo. In: Proceedings of the IEEE International Conference on 3D Imaging. 2014, 1–7

    Google Scholar 

  31. Li G, Zucker S W. Surface geometric constraints for stereo in belief propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2006, 2355–2362

    Google Scholar 

  32. Woodford O, Torr P, Reid I, Reid I, Fitzgibbon A. Global stereo reconstruction under second-order smoothness priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2115–2128

    Article  Google Scholar 

  33. Han X, Xu C Y, Prince J L. A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 755–768

    Article  Google Scholar 

  34. Esteban C H, Schmitt F. Silhouette and stereo fusion for 3D object modeling. Computer Vision and Image Understanding, 2004, 96(3): 367–392

    Article  Google Scholar 

  35. Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel H P. Laplacian surface editing. In: Proceedings of the ACM SIGGRAPH symposium on Geometry processing. 2004, 175–184

    Google Scholar 

  36. Zeng G, Paris S, Quan L, Sillion F. Progressive surface reconstruction from images using a local prior. In: Proceedings of the 10th IEEE International Conference on Computer Vision. 2005, 1230–1237

    Google Scholar 

  37. Tasdizen T, Whitaker R. Higher-order nonlinear priors for surface reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(7): 878–891

    Article  Google Scholar 

  38. Li Y, Sun J, Tang C K, Shum H Y. Lazy snapping. ACM Transactions on Graphics, 2004, 23(3): 303–308

    Article  Google Scholar 

  39. Kolmogorov V, Criminisi A, Blake A, Cross G. Probabilistic fusion of stereo with color and contrast for bilayer segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1480–1492

    Article  Google Scholar 

  40. Franco J S, Boyer E. Efficient polyhedral modeling from silhouettes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 414–427

    Article  Google Scholar 

  41. Matusik W, Buehler C, Raskar R, Gortler S, McMillan L. Imagebased visual hulls. In: Proceedings of the 27th ACM Annual Conference on Computer Graphics and Interactive Techniques. 2000, 369–374

    Google Scholar 

  42. Miller G, Hilton A. Exact view-dependent visual hulls. In: Proceedings of the IEEE International Conference on Pattern Recognition. 2006, 107–111

    Google Scholar 

  43. Vogiatzis G, Torr P H S, Cipolla R. Multi-view stereo via volumetric graph-cuts. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 391–398

    Google Scholar 

  44. Furukawa Y, Ponce J. Carved visual hulls for image-based modeling. International Journal of Computer Vision, 2009, 81(1): 53–67

    Article  Google Scholar 

  45. Zheng Z Y, Ma L Z, Li Z, Chen Z H. Reconstruction of shape and reflectance properties based on visual hull. In: Proceedings of the ACM Computer Graphics International Conference. 2009, 29–38

    Google Scholar 

  46. Sinha S N, Pollefeys M. Multi-view reconstruction using photoconsistency and exact silhouette constraints: a maximum-flow formulation. In: Proceedings of the 10th IEEE International Conference on Computer Vision. 2005, 349–356

    Google Scholar 

  47. Gall J, Stoll C, De Aguiar E, Theobalt C, Rosenhahn B, Seidel H. Motion capture using joint skeleton tracking and surface estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1746–1753

    Google Scholar 

  48. Vlasic D, Baran I, Matusik W, Popović J. Articulated mesh animation from multi-view silhouettes. ACM Transactions on Graphics, 2008, 27(3): 97

    Article  Google Scholar 

  49. Straka M, Hauswiesner S, Rüther M, Bischof H. Simultaneous shape and pose adaption of articulated models using linear optimization. In: Proceedings of European Conference on Computer Vision. 2012, 724–737

    Google Scholar 

  50. Liu Y, Gall J, Stoll C, Dai Q, Seidel H, Theobalt C. Markerless motion capture of multiple characters using multiview image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2720–2735

    Article  Google Scholar 

  51. Horn B K P. Shape from shading: A method for obtaining the shape of a smooth opaque object from one view. Technical Report. 1970

    Google Scholar 

  52. Durou J D, Falcone M, Sagona M. Numerical methods for shapefrom- shading: a new survey with benchmarks. Computer Vision and Image Understanding, 2008, 109(1): 22–43

    Article  Google Scholar 

  53. Herbort S, Wohler C. An introduction to image-based 3D surface reconstruction and a survey of photometric stereo methods. 3D Research, 2011, 2(3): 1–17

    Article  Google Scholar 

  54. Leclerc Y G, Bobick A F. The direct computation of height from shading. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1991, 552–558

    Google Scholar 

  55. Fua P, Leclerc Y G. Object-centered surface reconstruction: combining multi-image stereo and shading. International Journal of Computer Vision, 1995, 16(1): 35–56

    Article  Google Scholar 

  56. Jin H, Cremers D, Yezzi A J, Soatto S. Shedding light on stereoscopic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 36–42

    Google Scholar 

  57. Jin H, Yezz A, Soatto S. Stereoscopic shading: integrating multiframe shape cues in a variational framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2000, 169–176

    Google Scholar 

  58. Jin H, Yezzi A J, Soatto S. Region-based segmentation on evolving surfaces with application to 3D reconstruction of shape and piecewise constant radiance. In: Proceedings of European Conference on Computer Vision. 2004, 114–125

    Google Scholar 

  59. Yu T L, Xu N, Ahuja N. Recovering shape and reflectance model of non-lambertian objects from multiple views. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 226–233

    Google Scholar 

  60. Yu T L, Xu N, Ahuja N. Shape and view independent reflectance map from multiple views. International Journal of Computer Vision, 2007, 73(2): 123–138

    Article  MATH  Google Scholar 

  61. Yoon K J, Prados E, Sturm P. Joint estimation of shape and reflectance using multiple images with known illumination conditions. International Journal of Computer Vision, 2010, 86(2–3): 192–210

    Google Scholar 

  62. Wu C L, Wilburn B, Matsushita Y, Theobalt C. High-quality shape from multi-view stereo and shading under general illumination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2011, 969–976

    Google Scholar 

  63. Han Y, Lee J Y, Kweon I S. High quality shape from a single RGBD image under uncalibrated natural illumination. In: Proceedings of the IEEE International Conference on Computer Vision. 2013, 1617–1624

    Google Scholar 

  64. Zhang L, Curless B, Hertzmann A, Seitz S M. Shape and motion under varying illumination: unifying structure from motion, photometric stereo, and multiview stereo. In: Proceedings of the IEEE International Conference on Computer Vision. 2003, 618–625

    Chapter  Google Scholar 

  65. Basri R, Jacobs D, Kemelmacher I. Photometric stereo with general, unknown lighting. International Journal of Computer Vision, 2007, 72(3): 239–257

    Article  Google Scholar 

  66. Hernndez C, Vogiatzis G, Brostow G J, Stenger B, Cipolla R. Nonrigid photometric stereo with colored lights. In: Proceedings of the 11th IEEE International Conference on Computer Vision. 2007, 1–8

    Google Scholar 

  67. Brostow G J, Hernández C, Vogiatzis G, Stenger B, Cipolla R. Video normals from colored lights. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10): 2104–2114

    Article  Google Scholar 

  68. Roth J, Tong Y, Liu X. Unconstrained 3D face reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 2606–2615

    Google Scholar 

  69. Debevec P. The light stages and their applications to photoreal digital actors. SIGGRAPH Asia Technical Briefs, 2012, 2

    Google Scholar 

  70. Ghosh A, Fyffe G, Tunwattanapong B, Busch J, Yu X M, Debevec P. Multiview face capture using polarized spherical gradient illumination. ACM Transactions on Graphics, 2011, 30(6): 129

    Article  Google Scholar 

  71. Liu Y B, Dai Q H, Xu WL. A point-cloud-based multiview stereo algorithm for free-viewpoint video. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(3): 407–418

    Article  Google Scholar 

  72. Wu C L, Liu Y B, Dai Q H, Bennett W. Fusing multiview and photometric stereo for 3D reconstruction under uncalibrated illumination. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(8): 1082–1095

    Article  Google Scholar 

  73. Coughlan J M, Yuille A L. Manhattan world: compass direction from a single image by Bayesian inference. In: Proceedings of the 7th IEEE International Conference on Computer Vision. 1999, 941–947

    Chapter  Google Scholar 

  74. Furukawa Y, Curless B, Seitz S M, Szeliski R. Manhattan-world stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1422–1429

    Google Scholar 

  75. Vanegas C A, Aliaga D G, Beneš B. Building reconstruction using manhattan-world grammars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 358–365

    Google Scholar 

  76. Zeisl B, Zach C, Pollefeys M. Stereo reconstruction of building interiors with a vertical structure prior. In: Proceedings of the IEEE International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission. 2011, 366–373

    Google Scholar 

  77. Sun J, Li Y, Kang S B, Shum H Y. Symmetric stereo matching for occlusion handling. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 399–406

    Google Scholar 

  78. Zhang G, Jia J, Wong T T, Bao H. Consistent depth maps recovery from a video sequence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(6): 974–988

    Article  Google Scholar 

  79. Yang Q X, Wang L, Yang R G, Stewénius H, Nistér D. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 492–504

    Article  Google Scholar 

  80. Sinha S N, Steedly D, Szeliski R. Piecewise planar stereo for imagebased rendering. In: Proceedings of the IEEE International Conference on Computer Vision. 2009, 1881–1888

    Google Scholar 

  81. Gallup D, Frahm J M, Pollefeys M. Piecewise planar and nonplanar stereo for urban scene reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1418–1425

    Google Scholar 

  82. Kim H, Xiao H, Max N. Piecewise planar scene reconstruction and optimization for multi-view stereo. In: Proceedings of Asian Conference on Computer Vision. 2013, 191–204

    Google Scholar 

  83. Mathias M, Martinovic A, Weissenberg J, Van Gool L. Procedural 3D building reconstruction using shape grammars and detectors. In: Proceedings of the IEEE International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission. 2011, 304–311

    Google Scholar 

  84. Zebedin L, Bauer J, Karner K, Bischof H. Fusion of feature-and areabased information for urban buildings modeling from aerial imagery. In: Proceedings of European Conference on Computer Vision. 2008, 873–886

    Google Scholar 

  85. Wu C C, Agarwal S, Curless B, Seitz S M. Schematic surface reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1498–1505

    Google Scholar 

  86. Lafarge F, Keriven R, Brédif M, Hoang-Hiep V. A hybrid multiview stereo algorithm for modeling urban scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 5–17

    Article  Google Scholar 

  87. Lafarge F, Keriven R, Brédif M, Hoang-Hiep V. Hybrid multi-view reconstruction by jump-diffusion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 350–357

    Google Scholar 

  88. Mahabadi R K, Hane C, Pollefeys M. Segment based 3D object shape priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 2838–2846

    Google Scholar 

  89. Widanagamaachchi W N, Dharmaratne A T. 3D face reconstruction from 2D images. In: Proceedings of the IEEE Digital Image Computing: Techniques and Applications. 2008, 365–371

    Google Scholar 

  90. Amin S H, Gillies D. Analysis of 3D face reconstruction. In: Proceedings of the 14th IEEE International Conference on Image Analysis and Processing. 2007, 413–418

    Google Scholar 

  91. Hassner T, Basri R. Example based 3D reconstruction from single 2D images. In: Proceedings of the IEEE Computer Vision and Pattern Recognition Workshop. 2006, 15

    Google Scholar 

  92. Cheng C M, Lai S H. An integrated approach to 3D face model reconstruction from video. In: Proceedings of the IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems. 2001, 16–22

    Chapter  Google Scholar 

  93. Fidaleo D, Medioni G. Model-assisted 3D face reconstruction from video. In: Proceedings of the International Workshop on Analysis and Modeling of Faces and Gestures. 2007, 124–138

    Chapter  Google Scholar 

  94. Tytgat D, Lievens S, Six E. A prior-based approach to 3D face reconstruction using depth images. Advances in Depth Image Analysis and Applications, 2013, 32–41

    Chapter  Google Scholar 

  95. Baumberger C, Reyes M, Constantinescu M, Olariu R, Aguiar E, Oliveira-Santos T. 3D face reconstruction from video using 3D morphable model and silhouette. In: Proceedings of the 27th IEEE SIBGRAPI Conference on Graphics, Patterns and Images. 2014, 1–8

    Google Scholar 

  96. Kemelmacher-Shlizerman I, Seitz S M. Face reconstruction in the wild. In: Proceedings of the IEEE International Conference on Computer Vision. 2011, 1746–1753

    Google Scholar 

  97. Bérard P, Bradley D, Nitti M, Beeler T, Gross M. High-quality capture of eyes. ACM Transactions on Graphics, 2014, 33(6): 1–12

    Article  Google Scholar 

  98. Bermano A, Beeler T, Kozlov Y, Bradley D, Bickel B, Gross M. Detailed spatio-temporal reconstruction of eyelids. ACM Transactions on Graphics, 2015, 34(4): 44

    Article  Google Scholar 

  99. Hu L W, Ma C Y, Luo L J, Li H. Robust hair capture using simulated examples. ACM Transactions on Graphics, 2014, 33(4): 126

    Article  Google Scholar 

  100. Luo L, Li H, Rusinkiewicz S. Structure-aware hair capture. ACM Transactions on Graphics, 2013, 32(4): 76

    Article  MATH  Google Scholar 

  101. Xiao J, Fang T, Zhao P, Lhuillier M, Quan L. Image-based street-side city modeling. ACM Transactions on Graphics, 2009, 28(5): 89–97

    Article  Google Scholar 

  102. Nan L, Sharf A, Zhang H, Cohen-Or D, Chen B. SmartBoxes for interactive urban reconstruction. ACM Transactions on Graphics, 2010, 29(4): 157–166

    Article  Google Scholar 

  103. Tan P, Zeng G, Wang J D, Kang S B, Quan L. Image-based tree modeling. ACM Transactions on Graphics, 2007, 26(3): 87

    Article  Google Scholar 

  104. Quan L, Tan P, Zeng G, Yuan L, Wang J D, Kang S B. Image-based plant modeling. ACM Transactions on Graphics, 2006, 25(3): 599–604

    Article  Google Scholar 

  105. Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J. Automatic reconstruction of tree skeletal structures from point clouds. ACM Transactions on Graphics, 2010, 29(6): 151

    Article  Google Scholar 

  106. Blanz V, Mehl A, Vetter T, Seidel H. A statistical method for robust 3D surface reconstruction from sparse data. In: Proceedings of the IEEE International Symposium on 3D Data Processing, Visualization and Transmission. 2004, 293–300

    Google Scholar 

  107. Bao S Y, Savarese S. Semantic structure from motion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2011, 2025–2032

    Google Scholar 

  108. Bao S Y, Chandraker M, Lin Y, Savarese S. Dense object reconstruction with semantic priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 1264–1271

    Google Scholar 

  109. Dame A, Prisacariu V A, Ren C Y, Reid I. Dense reconstruction using 3D object shape priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 1288–1295

    Google Scholar 

  110. Hane C, Savinov N, Pollefeys M. Class specific 3D object shape priors using surface normals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 652–659

    Google Scholar 

  111. Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction. In: Proceedings of Eurographics Symposium on Geometry Processing. 2006, 61–70

    Google Scholar 

  112. Zhang Q S, Song X, Shao X W, Zhao H J, Shibasaki R. When 3D reconstruction meets ubiquitous RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 700–707

    Google Scholar 

  113. Mehrdad V, Ebrahimnezhad H. 3D object retrieval based on histogram of local orientation using one-shot score support vector machine. Frontiers of Computer Science, 2015, 9(6): 990–1005

    Article  Google Scholar 

  114. Hane C, Ladicky L, Pollefeys M. Direction matters: depth estimation with a surface normal classifier. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 381–389

    Google Scholar 

  115. Park M G, Yoon K J. Leveraging stereo matching with learning-based confidence measures. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 101–109

    Google Scholar 

  116. Guney F, Geiger A. Displets: resolving stereo ambiguities using object knowledge. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 4165–4175

    Google Scholar 

  117. Tanskanen P, Kolev K, Meier L, Camposeco F, Saurer O, Pollefeys M. Live metric 3D reconstruction on mobile phones. In: Proceedings of the IEEE International Conference on Computer Vision. 2013, 65–72

    Google Scholar 

  118. Kolev K, Tanskanen P, Speciale P, Pollefeyset M. Turning mobile phones into 3D scanners. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 3946–3953

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61371166, and 61422107) and the Natural Science Foundation of Jiangsu Province, China (BK20130583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Cao.

Additional information

Hao Zhu received the BS degree from Department of Electronic Science and Technology, Nanjing University (NJU), China in 2013. He is currently working toward the PhD degree of electronic science and technology at NJU. His interests include computer vision and computational imaging.

Yongming Nie received the BS degree from Department of Mathematics, Tianshui Normal University, China in 2009, and MS degree from the Department of Mathematics, Nanchang University, China in 2012. He is currently working toward the PhD degree of electronic science and technology in Nanjing University. His research interests mainly include computer vision and machine learning.

Tao Yue received the BS degree in automation from Northwestern Polytechnical University, China in 2009, and the PhD degree from Tsinghua University, China in 2015. He is currently an associate researcher with the School of Electronic Science and Engineering, Nanjing University, China. His research interests mainly include image processing and computational photography.

Xun Cao received his BS degree from Nanjing University (NJU), China in 2006, and PhD degree from the Department of Automation, Tsinghua University, China in 2012. He is currently a professor at the School of Electronic Science and Engineering, NJU. Dr. Cao was visiting Philips Research, Aachen, Germany during 2008, and Microsoft Research Asia, China during 2009 and 2010. He was a visiting scholar at the University of Texas at Austin, USA from 2010 to 2011. His research interests include computational photography, image based modeling and rendering, and 3D TV systems. He is the awardee of the NSFC Excellent Young Scholars Program in 2014.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Nie, Y., Yue, T. et al. The role of prior in image based 3D modeling: a survey. Front. Comput. Sci. 11, 175–191 (2017). https://doi.org/10.1007/s11704-016-5520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-016-5520-8

Keywords

Navigation