Skip to main content
Log in

Modèles de douleur chronique cancéreuse: les métastases osseuses

Chronic cancer pain models: bone metastasis

  • Article Original / Original Article
  • Published:
Douleur et Analgésie

Résumé

Les douleurs liées aux métastases osseuses sont fréquentes, invalidantes et difficiles à traiter. Des modèles animaux qui reproduisent la douleur des patients ont été récemment développés chez la souris et le rat; ils ont permis de commencer à déchiffrer les mécanismes cellulaires et moléculaires à l’origine de cette douleur. Le remodelage osseux et la tumeur elle-même contribuent à la douleur du cancer de l’os, alors que s’installe une sensibilisation du système nerveux, à la fois périphérique et centrale.

Abstract

Bone cancer pain is very common and patients with this type of pain may be difficult to treat. Recent animal model of bone cancer that mirror the clinical picture of patients with cancer pain have allowed to uncover the cellular and molecular mechanisms of such pain. In these models, both disease-induced osteolysis and tumors themselves contributed to the generation of pain while peripheral and central sensitization of the nervous system was present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Cain DM, Wacnik PW, Turner M, et al (2001) Functional interactions between tumor and peripheral nerve: changes in excitability and morphology of primary afferent fibers in a murine model of cancer pain. J Neurosci 21:9367–9376

    CAS  PubMed  Google Scholar 

  2. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243s–6249s

    Article  PubMed  Google Scholar 

  3. Curto-Reyes V, Llames S, Hidalgo A, et al (2010) Spinal and peripheral analgesic effects of the CB2 cannabinoid receptor agonist AM1241 in two models of bone cancer-induced pain. Br J Pharmacol 160:561–573

    Article  CAS  PubMed  Google Scholar 

  4. Donovan-Rodriguez T, Dickenson AH, Urch CE (2005) Gabapentin normalizes spinal neuronal responses that correlate with behavior in a rat model of cancer-induced bone pain. Anesthesiology 102:132–140

    Article  CAS  PubMed  Google Scholar 

  5. Donovan-Rodriguez T, Urch CE, Dickenson AH (2006) Evidence of a role for descending serotonergic facilitation in a rat model of cancer-induced bone pain. Neurosci Lett 393:237–242

    Article  CAS  PubMed  Google Scholar 

  6. Doré-Savard L, Otis V, Belleville K, et al (2010) Behavioral, medical imaging and histopathological features of a new rat model of bone cancer pain. PLoS One 5:e13774

    Article  PubMed  Google Scholar 

  7. Furuse S, Kawamata T, Yamamoto J, et al (2009) Reduction of bone cancer pain by activation of spinal cannabinoid receptor 1 and its expression in the superficial dorsal horn of the spinal cord in a murine model of bone cancer pain. Anesthesiology 111:173–186

    Article  CAS  PubMed  Google Scholar 

  8. Ghilardi JR, Röhrich H, Lindsay TH, et al (2005) Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci 25:3126–3131

    Article  CAS  PubMed  Google Scholar 

  9. Goblirsch M, Mathews W, Lynch C, et al (2004) Radiation treatment decreases bone cancer pain, osteolysis and tumor size. Radiat Res 161:228–234

    Article  CAS  PubMed  Google Scholar 

  10. Gu X, Zhang J, Ma Z, et al (2010) The role of Nmethyl-D-aspartate receptor subunit NR2B in spinal cord in cancer pain. Eur J Pain 14:496–502

    Article  CAS  PubMed  Google Scholar 

  11. Halvorson KG, Sevcik MA, Ghilardi JR, et al (2006) Similarities and differences in tumor growth, skeletal remodeling and pain in an osteolytic and osteoblastic model of bone cancer. Clin J Pain 22:587–600

    Article  PubMed  Google Scholar 

  12. Honore P, Luger NM, Sabino MA, et al (2000) Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 6:521–528

    Article  CAS  PubMed  Google Scholar 

  13. Honore P, Rogers SD, Schwei MJ, et al (2000) Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 98:585–598

    Article  CAS  PubMed  Google Scholar 

  14. Jimenez-Andrade JM, Mantyh WG, Bloom AP, et al (2010) Bone cancer pain. Ann N Y Acad Sci 1198:173–181

    Article  PubMed  Google Scholar 

  15. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  CAS  PubMed  Google Scholar 

  16. King T, Vardanyan A, Majuta L, et al (2007) Morphine treatment accelerates sarcoma-induced bone pain, bone loss, and spontaneous fracture in a murine model of bone cancer. Pain 132:154–168

    Article  CAS  PubMed  Google Scholar 

  17. Lozano-Ondoua AN, Wright C, Vardanyan A, et al (2010) A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss. Life Sci 86:646–653

    Article  CAS  PubMed  Google Scholar 

  18. Luger NM, Sabino MA, Schwei MJ, et al (2002) Efficacy of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs inflammatory pain. Pain 99:397–406

    Article  CAS  PubMed  Google Scholar 

  19. Mach DB, Rogers SD, Sabino MC, et al (2002) Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113:155–166

    Article  CAS  PubMed  Google Scholar 

  20. Mantyh PW (2006) Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 7:797–809

    Article  CAS  PubMed  Google Scholar 

  21. Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP (2002) Molecular mechanisms of cancer pain. Nat Rev Cancer 2:201–209

    Article  CAS  PubMed  Google Scholar 

  22. Mao-Ying QL, Zhao J, Dong ZQ, et al (2006) A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Biochem Biophys Res Commun 345:1292–1298

    Article  CAS  PubMed  Google Scholar 

  23. Medhurst SJ, Walker K, Bowes M, et al (2002) A rat model of bone cancer pain. Pain 96:129–140

    Article  CAS  PubMed  Google Scholar 

  24. Mercadante S (1997) Malignant bone pain: pathophysiology and treatment. Pain 69:1–18

    Article  CAS  PubMed  Google Scholar 

  25. Minami K, Hasegawa M, Ito H, et al (2009) Morphine, oxycodone, and fentanyl exhibit different analgesic profiles in mouse pain models. J Pharmacol Sci 111:60–72

    Article  CAS  PubMed  Google Scholar 

  26. Mouedden ME, Meert TF (2007) Pharmacological evaluation of opioid and non-opioid analgesics in a murine bone cancer model of pain. Pharmacol Biochem Behav 86:458–467.

    Article  PubMed  Google Scholar 

  27. Nagae M, Hiraga T, Yoneda T (2007) Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J Bone Miner Metab 25:99–104

    Article  PubMed  Google Scholar 

  28. Niiyama Y, Kawamata T, Yamamoto J, et al (2007) Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinct subpopulations of dorsal root ganglion neurons. Neuroscience 148:560–572

    Article  CAS  PubMed  Google Scholar 

  29. Pacharinsak C, Beitz A (2008) Animal models of cancer pain. Comp Med 58:220–233

    CAS  PubMed  Google Scholar 

  30. Peters CM, Ghilardi JR, Keyser CP, et al (2005) Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain. Exp Neurol 193:85–100

    Article  PubMed  Google Scholar 

  31. Portenoy RK (2011) Treatment of cancer pain. Lancet 377:2236–2247

    Article  CAS  PubMed  Google Scholar 

  32. Portenoy RK, Lesage P (1999) Management of cancer pain. Lancet 353:1695–1700

    Article  CAS  PubMed  Google Scholar 

  33. Sabino MA, Luger NM, Mach DB, et al (2003) Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system. Int J Cancer 104:550–558

    Article  CAS  PubMed  Google Scholar 

  34. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  CAS  PubMed  Google Scholar 

  35. Schwei MJ, Honore P, Rogers SD, et al (1999) Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci 19:10886–10897

    CAS  PubMed  Google Scholar 

  36. Urch CE, Donovan-Rodriguez T, Dickenson AH (2003) Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain. Pain 106:347–356

    Article  CAS  PubMed  Google Scholar 

  37. Vit JP, Ohara PT, Tien DA, et al (2006) The analgesic effect of low dose focal irradiation in a mouse model of bone cancer is associated with spinal changes in neuro-mediators of nociception. Pain 120:188–201

    Article  PubMed  Google Scholar 

  38. Wacnik PW, Eikmeier LJ, Ruggles TR, et al (2001) Functional interactions between tumor and peripheral nerve: morphology, algogen identification, and behavioral characterization of a new murine model of cancer pain. J Neurosci 21:9355–9366

    CAS  PubMed  Google Scholar 

  39. Wacnik PW, Eikmeier LJ, Simone DA, et al (2005) Nociceptive characteristics of tumor necrosis factor-alpha in naive and tumorbearing mice. Neuroscience 132:479–491

    Article  CAS  PubMed  Google Scholar 

  40. Walker K, Medhurst SJ, Kidd BL, et al (2002) Disease modifying and anti-nociceptive effects of the bisphosphonate, zoledronic acid in a model of bone cancer pain. Pain 100:219–229

    Article  CAS  PubMed  Google Scholar 

  41. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769

    Article  CAS  PubMed  Google Scholar 

  42. Yamamoto J, Kawamata T, Niiyama Y, et al (2008) Downregulation of mu opioid receptor expression within distinct subpopulations of dorsal root ganglion neurons in a murine model of bone cancer pain. Neuroscience 151:843–853

    Article  CAS  PubMed  Google Scholar 

  43. Zeppetella G (2009) Impact and management of breakthrough pain in cancer. Curr Opin Support Palliat Care 3:1–6

    Article  PubMed  Google Scholar 

  44. Zhang RX, Liu B, Wang L, et al (2005) Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain 118:125–136

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Voisin.

About this article

Cite this article

Voisin, D.L., Lefèvre, Y., Ducourneau, V.R.R. et al. Modèles de douleur chronique cancéreuse: les métastases osseuses. Douleur analg 25, 55–60 (2012). https://doi.org/10.1007/s11724-012-0277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11724-012-0277-9

Mots clés

Keywords

Navigation