Skip to main content
Log in

Existence and multiplicity results for Dirichlet problem with fractional Laplacian and nonlinearity

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

The existence and multiplicity results for Dirichlet BVPs with the fractional Laplacian are established depending on the range of parameter and behavior of the nonlinearity at zero and at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D.: Existence theorem for single and multiple solutions to singular positone boundary value problems. J. Differ. Equ. 175, 393–414 (2001)

    Article  Google Scholar 

  2. Amann, H.: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Funct. Anal. 11, 346–384 (1972)

    Article  MathSciNet  Google Scholar 

  3. Baras, P.: Non-unicité des solutions d’une equation d’évolution non-linéaire. Ann. Fac. Sci. Toulouse 5, 287–302 (1983)

    Article  MathSciNet  Google Scholar 

  4. Bertoin, J.: Lévy Processes, Cambridge Tracts in Math. Cambridge Univ. Press, Cambridge (1996)

    Google Scholar 

  5. Blumenthal, R.M., Getoor, R.K., Ray, D.B.: On the distribution of first hits for the symmetric stable processes. Trans. Am. Math. Soc. 99, 540–554 (1961)

    MathSciNet  MATH  Google Scholar 

  6. Bogdan, K., Byczkowski, T.: Potential theory for the \(\alpha \)-stable Schrödinger operator on bounded Lipschitz domain. Stud. Math. 133, 53–92 (1999)

    Article  Google Scholar 

  7. Bogdan, K., Byczkowski, T.: Potential theory of Schrödinger operator based on fractional laplacian. Prob. Math. Stat. 20, 293–335 (2000)

    MATH  Google Scholar 

  8. Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondracek, Z.: Potential Theory of Stable Processes and its Extensions. Lecture Notes in Mathematics, Springer (2009)

  9. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincaré 31, 23–53 (2014)

    Article  MathSciNet  Google Scholar 

  10. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367, 911–941 (2015)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Diff. Eq. 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  12. Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)

    Article  MathSciNet  Google Scholar 

  13. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  14. Fijałkowski, P., Przeradzki, B., Stańczy, R.: A nonlocal elliptic equation in a bounded domain. Banach Center Publ. 66, 127–133 (2004)

    Article  MathSciNet  Google Scholar 

  15. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, Orlando, FL (1988)

    MATH  Google Scholar 

  16. Ha, K.S., Lee, Y.H.: Existence of multiple positive solutions of singular boundary value problems. Nonlinear Anal. 28, 1429–1438 (1997)

    Article  MathSciNet  Google Scholar 

  17. Kulczycki, T.: Gradient estimates of q-harmonic functions of fractional Schrödinger operator. Potential Anal. 39, 69–98 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kulczycki, T., Stańczy, R.: Multiple solutions for Dirichlet nonlinear BVPs involving fractional Laplacian. Discrete Contin. Dyn. Syst. 19, 2581–2591 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Krasnosel’skii, M. A.: Topological Methods in the Theory of Nonlinear Integral Equations, translated by A. H. Armstrong, translation edited by J. Burlak, A Pergamon Press Book. The Macmillan Co., New York (1964)

  20. Lee, Y.H.: An existence result of positive solutions for singular superlinear boundary value problems and its applications. J. Korean Math. Soc. 34, 247–255 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Przeradzki, B., Stańczy, R.: Positive solutions for sublinear elliptic equations. Colloq. Math. 92, 141–151 (2002)

    Article  MathSciNet  Google Scholar 

  22. Ros-Oton, X., Serra, J.: Fractional Laplacian: Pohozhaev identity and nonexistence results. C. R. Math. Acad. Sci. 350, 505–508 (2012)

    Article  Google Scholar 

  23. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pure Appl. 101, 275–302 (2014)

    Article  MathSciNet  Google Scholar 

  24. Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256, 1842–1864 (2009)

    Article  MathSciNet  Google Scholar 

  25. Stańczy, R.: Hammerstein equations with an integral over a non-compact domain. Ann. Polonici Math. 69, 49–60 (1998)

    Article  MathSciNet  Google Scholar 

  26. Stańczy, R.: Nonlocal elliptic equations. Nonlinear Anal. 47, 3579–3584 (2001)

    Article  MathSciNet  Google Scholar 

  27. Stańczy, R.: Positive solutions for superlinear elliptic equations. J. Math. Anal. Appl. 283, 159–166 (2003)

    Article  MathSciNet  Google Scholar 

  28. Stańczy, R.: Multiple solutions for equations involving bilinear, coercive and compact forms with applications to differential equations. J. Math. Anal. Appl. 405, 416–421 (2013)

    Article  MathSciNet  Google Scholar 

  29. Valdinoci, E.: From the long jump random walk to the fractional laplacian. Bol. Soc. Esp. Mat. Appl. 49, 33–44 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Vázquez, J.L.: Nonlinear diffusion with fractional Laplacian operators. Nonlinear Part. Differ. Eq. Abel Symp. 7, 271–298 (2012)

    Article  MathSciNet  Google Scholar 

  31. Weissler, F.B.: Asymptotic analysis of an ordinary differential equation and nonuniqueness for a semilinear partial differential equation. Arch. Rational Mech. Anal. 91, 231–245 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Stańczy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix—technicalities: fractional Laplacian

Appendix—technicalities: fractional Laplacian

We follow the lines of [18]. Let \(\alpha \in (0,2)\), \(u:{{\mathbb {R}}}^d \rightarrow {{\mathbb {R}}}\) be a measurable and

$$\begin{aligned} \int \limits _{{{\mathbb {R}}}^d} \frac{|u(x)|}{(1+|x|)^{d+\alpha }} \, dx < \infty . \end{aligned}$$
(25)

For such a function the fractional Laplacian can be defined as in [6]

$$\begin{aligned} \left( -\Delta \right) ^{\alpha /2}u(x)=c_{d,-\alpha }\lim _{\varepsilon \rightarrow 0^+} \int \limits _{\{y\in {\mathbb {R}}^d:|x-y|>\varepsilon \}}\frac{u(x)-u(y)}{|x-y|^{d+\alpha }}dy, \end{aligned}$$

whenever the limit exists while the constant \(c_{d,-\alpha }\) can be defined for \(\gamma =-\alpha \) as

$$\begin{aligned} c_{d,\gamma }=\Gamma ((d-\gamma )/2)/(2^\gamma \pi ^{d/2}|\Gamma (\gamma /2)|). \end{aligned}$$

One can see that if u satisfies (25) and \(u \in C^2(D)\) for some open set \(D \subset {{\mathbb {R}}}^d\) then \(\left( -\Delta \right) ^{\alpha /2}u(x)\) is well defined for any \(x \in D\), which can be justified by Taylor series of u. The fractional Laplacian may be defined in a weak sense, see [6].

Moreover, for \(D\subset {{\mathbb {R}}}^d\) there exist the Green operator \({{\mathcal {G}}}_D\) being the inverse \(\left( (-\Delta )^{\alpha /2}\right) ^{-1}\). The Green function \(G_D(x,y)\) corresponding to the problem (1)–(2) with \(D=(-1,1)\) is the kernel of \({{\mathcal {G}}}_D\). Namely, if \(g \in L^{\infty }\) then the unique (weak) solution of this problem is given by

$$\begin{aligned} u(x) = {{\mathcal {G}}}_D g(y) = \int \limits _D G_{D}(x,y) g(y) \, dy. \end{aligned}$$
(26)

One can notice that u defined by (26) is in fact in \(C^{\gamma }\) with \(\gamma >0\), cf. [23], whence also follows that \({{\mathcal {G}}}_D\) increases interior regularity by \(\alpha \) in the Hölder sense. The theory on the Green operator and the Green function may be found e.g. in [6] or [7]. Furthermore, for any \(\alpha \in (0,2)\) the Green function for the ball B(0, 1) is given by an explicit formula [5]

$$\begin{aligned} G_{B(0,1)}(x,y)=c^d_{\alpha }|x-y|^{\alpha -d}\int \limits _0^{w(x,y)}r^{\alpha /2-1}(r+1)^{-d/2}\,dr, \quad x,y \in B(0,1), \end{aligned}$$

where \(w(x,y)=(1-|x|^2)(1-|y|^2)|x-y|^{-2}\) and \(c^d_{\alpha }=\Gamma (d/2)/(2^{\alpha }\pi ^{d/2}\Gamma ^2(\alpha /2)).\) We have \(G_{B(0,1)}(x,y) = 0\) if \(x \notin B(0,1)\) or \(y \notin B(0,1)\). Estimates on the regularity of solutions to the equations involving fractional Laplacian were provided by Ros-Oton and Serra [23]. The regularity and the existence and uniqueness issues for the problems connected with the fractional Laplacian were also considered by Cabré and Sire [9, 10]. For any open bounded \(C^{1,1}\) domain D, \(g\in L^{\infty }\) and a distance function \(\delta (x)=\text {dist}(x,\partial D)\) if u is the solution of the Dirichlet problem (1)–(2) with \(D=(-1,1)\) then \(u/\delta ^{\alpha /2}|_{D}\) can be continuously extended to \({\overline{D}}\). Moreover, we have \(u/\delta ^{\alpha /2} \in C^{\gamma }(\overline{D})\) and we control the norm

$$\begin{aligned} ||u/\delta ^{\alpha /2}||_{C^{\gamma }({\overline{D}})} \le C |g| \end{aligned}$$

for some \(\gamma <\min \{\alpha /2,1-\alpha /2\}.\) It is thus sufficient, by the compact embedding \(C^{\gamma }(\overline{D})\subset C(\overline{D})\), for proving the compactness of the operator \({{\mathcal {G}}}_D:C(\overline{D})\rightarrow C(\overline{D}).\) Moreover, once Hölder continuity is established bootstrap arguments can be used to ascertain the existence of classical \(C^2\) or even more regular solutions. Since \((-\Delta )^{\alpha /2}(1-|x|^2)_+^{\alpha /2}=1\) then \((-\Delta )^{-\alpha /2}1(0)=1\) and due to unimodality \(|(-\Delta )^{-\alpha /2}1|=1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bors, D., Stańczy, R. Existence and multiplicity results for Dirichlet problem with fractional Laplacian and nonlinearity. J. Fixed Point Theory Appl. 23, 75 (2021). https://doi.org/10.1007/s11784-021-00915-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-021-00915-8

Mathematics Subject Classification

Keywords

Navigation