Skip to main content
Log in

Neural correlates of counting large numerosity

  • Original Aricle
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

The mastery of counting numerosities larger than those correctly estimated by infants or non-human species is an important foundation for the development of higher level calculation skills. The cognitive processes involved in counting are related to spatial attention, language, and number processing. However, the respective involvement of language- and/or visuo-spatial-based brain systems during counting is still under debate. In the present functional magnetic resonance imaging study, we asked 27 right-handed participants to perform an enumeration task on visual arrays of bars that varied in numerosity. Each enumeration condition was contrasted to a color-detection condition that was numerically and spatially matched to the counting condition. The results showed a behavioral discontinuity in response time slopes between large (6–10) and small (1–5) numerosities during enumeration, suggesting that during large enumeration, participants engaged counting processes. Comparing brain regional activity during the enumeration of large numerosity to the enumeration of smaller numerosity, we found increased activation in the bilateral fronto-parietal attentional network, the inferior parietal gyri/intraparietal sulci, and the left ventral premotor and left inferior temporal areas. These results indicated that in adults who master enumeration, counting more than five items requires the strong involvement of spatial attention and eye movements, as well as numerical magnitude processes. Counting large numerosity also recruited verbal working memory areas, subtending a subvocal articulatory code and a visual representation of numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9, 278–291.

    Article  Google Scholar 

  • Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in Cognitive Sciences, 6, 511–516.

    Article  Google Scholar 

  • Ansari, D., Lyons, I. M., van Eimeren, L., & Xu, F. (2007). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19, 1845–1853.

    Article  Google Scholar 

  • Balakrishnan, J. D., & Ashby, F. G. (1992). Subitizing: Magical numbers or mere superstition? Psychological Research, 54, 80–90.

    Article  Google Scholar 

  • Behrmann, M., Geng, J. J., & Shomstein, S. (2004). Parietal cortex and attention. Current Opinion in Neurobiology, 14, 212–217.

    Article  Google Scholar 

  • Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13, 400–404.

    Google Scholar 

  • Connolly, J. D., Goodale, M. A., Menon, R. S., & Munoz, D. P. (2002). Human fMRI evidence for the neural correlates of preparatory set. Nature Neuroscience, 5, 1345–1352.

    Article  Google Scholar 

  • Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, P., Drury, H. A., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21, 761–773.

    Article  Google Scholar 

  • Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 1347–1351.

    Article  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.

    Article  Google Scholar 

  • Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., et al. (2003). Learning complex arithmetic: An fMRI study. Cognitive Brain Research, 18, 76–88.

    Article  Google Scholar 

  • Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C. M., et al. (2005). Learning by strategies and learning by drill—Evidence from an fMRI study. Neuroimage, 25, 838–849.

    Article  Google Scholar 

  • Duffau, H., Capelle, L., Denvil, D., Gatignol, P., Sichez, N., Lopes, M., et al. (2003). The role of dominant premotor cortex in language: A study using intraoperative functional mapping in awake patients. Neuroimage, 20, 1903–1914.

    Article  Google Scholar 

  • Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15, 47–56.

    Article  Google Scholar 

  • Fulbright, R. K., Manson, S. C., Skudlarski, P., Lacadie, C. M., & Gore, J. C. (2003). Quantity determination and the distance effect with letters, numbers, and shapes: A functional MR imaging study of number processing. American Journal of Neuroradiology, 24, 193–200.

    Google Scholar 

  • Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.

    Article  Google Scholar 

  • Geary, D. C. (2000). From infancy to adulthood: The development of numerical abilities. European Child and Adolescent Psychiatry, 9(Suppl. 2), II11–II16.

    Google Scholar 

  • Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24, 411–429.

    Google Scholar 

  • Geary, D. C., Bow-Thomas, C. C., & Yao, Y. (1992). Counting knowledge and skill in cognitive addition: A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology, 54, 372–391.

    Article  Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has no memory. Nature, 394, 575–577.

    Article  Google Scholar 

  • Kansaku, K., Carver, B., Johnson, A., Matsuda, K., Sadato, N., & Hallett, M. (2007). The role of the human ventral premotor cortex in counting successive stimuli. Experimental Brain Research, 178, 339–350.

    Article  Google Scholar 

  • Kaufman, E. L., & Lord, M. W. (1949). The discrimination of visual number. American Journal of Psychology, 62, 498–525.

    Article  Google Scholar 

  • LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. Neuroimage, 10, 695–704.

    Article  Google Scholar 

  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125.

    Article  Google Scholar 

  • Logie, R. H., & Baddeley, A. D. (1987). Cognitive processes in counting. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 310–326.

    Article  Google Scholar 

  • Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology: General, 111, 1–22.

    Article  Google Scholar 

  • Mellet, E., Petit, L., Denis, M., & Tzourio, N. (1998). Reopening the mental imagery debate: Lessons from functional anatomy. Neuroimage, 8, 129–139.

    Article  Google Scholar 

  • Petit, L., & Beauchamp, M. S. (2003). Neural basis of visually guided head movements studied with fMRI. Journal of Neurophysiology, 89, 2516–2527.

    Article  Google Scholar 

  • Petit, L., Zago, L., Vigneau, M., Andersson, F., Mazoyer, B., Mellet, E., et al. (2009). Functional asymmetries revealed in visually guided saccades: An fMRI study. Journal of Neurophysiology, 102, 2994–3003.

    Article  Google Scholar 

  • Piazza, M., Giacomini, E., Le Bihan, D., & Dehaene, S. (2003). Single-trial classification of parallel pre-attentive and serial attentive processes using functional magnetic resonance imaging. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 1237–1245.

    Article  Google Scholar 

  • Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage, 15, 435–446.

    Article  Google Scholar 

  • Piazza, M., Mechelli, A., Price, C. J., & Butterworth, B. (2006). Exact and approximate judgements of visual and auditory numerosity: An fMRI study. Brain Research, 1106, 177–188.

    Article  Google Scholar 

  • Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14, 1013–1026.

    Article  Google Scholar 

  • Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41, 983–993.

    Article  Google Scholar 

  • Price, G. R., Holloway, I., Rasanen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17, R1042–R1043.

    Article  Google Scholar 

  • Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 1779–1790.

    Article  Google Scholar 

  • Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage, 39, 417–422.

    Article  Google Scholar 

  • Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47, 2859–2865.

    Article  Google Scholar 

  • Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: Heterogeneity might not mean different mechanisms. Trends in Cognitive Sciences, 13, 92–99.

    Article  Google Scholar 

  • Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: Combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51.

    Article  Google Scholar 

  • Sathian, K., Simon, T. J., Peterson, S., Patel, G. A., Hoffman, J. M., & Grafton, S. T. (1999). Neural evidence linking visual object enumeration and attention. Journal of Cognitive Neuroscience, 11, 36–51.

    Article  Google Scholar 

  • Trick, L. M., & Pylyshyn, Z. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101, 80–102.

    Article  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273–289.

    Article  Google Scholar 

  • Venkatraman, V., Ansari, D., & Chee, M. W. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43, 744–753.

    Article  Google Scholar 

  • Vigneau, M., Jobard, G., Mazoyer, B., & Tzourio-Mazoyer, N. (2005). Word and non-word reading: What role for the Visual Word Form Area? Neuroimage, 27, 694–705.

    Article  Google Scholar 

  • Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3, 255–274.

    Article  Google Scholar 

  • Watson, D. G., Maylor, E. A., & Bruce, L. A. (2007). The role of eye movements in subitizing and counting. Journal of Experimental Psychology: Human Perception and Performance, 33, 1389–1399.

    Article  Google Scholar 

  • Wojciulik, E., & Kanwisher, N. (1999). The generality of parietal involvement in visual attention. Neuron, 23, 747–764.

    Article  Google Scholar 

  • Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. Neuroimage, 13, 314–327.

    Article  Google Scholar 

  • Zago, L., Petit, L., Turbelin, M.-R., Andersson, F., Vigneau, M., & Tzourio-Mazoyer, N. (2008). How verbal and spatial manipulation network contribute to calculation: An fMRI study. Neuropsychologia, 46, 2403–2414.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Zago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zago, L., Petit, L., Mellet, E. et al. Neural correlates of counting large numerosity. ZDM Mathematics Education 42, 569–577 (2010). https://doi.org/10.1007/s11858-010-0254-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-010-0254-9

Keywords

Navigation