Skip to main content

Advertisement

Log in

The Skin as a Route of Allergen Exposure: Part I. Immune Components and Mechanisms

  • Allergens (RK Bush and JA Woodfolk, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To highlight recent contributions in the literature that enhance our understanding of the cutaneous immune response to allergen.

Recent Findings

Defects in skin barrier function in infancy set the stage for the development of atopic dermatitis (AD) and allergy. Both genetic and environmental factors can contribute to damage of the stratum corneum (SC), with activation of specific protease enzymes under high pH conditions playing a key role. Immune cells and mediators in the dermis and epidermis impair SC repair mechanisms and support allergy development. In barrier-disrupted skin, type 2 innate lymphoid cells (ILC2s), mast cells (MCs), and basophils have been shown to promote AD and pathogenic Th2 responses in murine models.

Summary

Skin barrier disruption favors induction of systemic Th2-associated inflammatory pathways. A better understanding of the ontogeny and regulation of these complex networks in infant skin is needed to guide future strategies for allergy treatment and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Atopic dermatitis

AMP:

Anti-microbial peptide

APC:

Antigen-presenting cell

CerS3:

Ceramide synthase

CLA:

Cutaneous lymphocyte antigen

DC:

Dendritic cell

DDC:

Dermal dendritic cell

FFA:

Free fatty acids

FLG:

Filaggrin

HDM:

House dust mite

HPV:

Human papilloma virus

iDC:

Inflammatory dendritic cells

IDEC:

Inflammatory dendritic epithelial cell

ILC2:

Type 2 innate lymphoid cell

KLK-5:

Kallikrein-5

KLK-7:

Kallikrein-7

LC:

Langerhans cell

LEKTI:

Kazal-type 5 serine protease inhibitor

LPS:

Lipopolysaccharide

MC:

Mast cell

MDDC:

Monocyte-derived dendritic cell

NMF:

Natural moisturizing factor

OVA:

Ovalbumin

PAR-2:

Protease-activated receptor-2

SC:

Stratum corneum

SCCE:

Stratum corneum chymotryptic enzyme

SKALP:

Skin-derived antileukoprotease

SLS:

Sodium laureth sulfate

SPINK 5:

Serine protease inhibitor kazal-type-5

TER:

Transepithelial resistance

TEWL:

Transepidermal water loss

Tip-DCs:

TNF and iNOS-producing DCs

TJ:

Tight junction

TLR:

Toll-like receptor

Treg:

T regulatory cell

TSLP:

Thymic stromal lymphopoietin

TSLPR:

Thymic stromal lymphopoietin receptor

t-UCA:

Trans urocanic acid

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kondo H, Ichikawa Y, Imokawa G. Percutaneous sensitization with allergens through barrier-disrupted skin elicits a Th2-dominant cytokine response. Eur J Immunol. 1998;28:769–79. doi:10.1002/(SICI)1521-4141(199803)28:03<769::AID-IMMU769>3.0.CO;2-H.

    Article  CAS  PubMed  Google Scholar 

  2. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9:165–9.

    Article  CAS  PubMed  Google Scholar 

  3. Woodfolk JA, Commins SP, Schuyler AJ, Erwin EA, Platts-Mills TA. Allergens, sources, particles, and molecules: why do we make IgE responses? Allergol Int. 2015;64:295–303. doi:10.1016/j.alit.2015.06.001.

    Article  CAS  PubMed  Google Scholar 

  4. Banerjee S et al. Der p 11 is a major allergen for house dust mite-allergic patients suffering from atopic dermatitis. J Investig Dermatol. 2015;135:102–9. doi:10.1038/jid.2014.271.

    Article  CAS  PubMed  Google Scholar 

  5. Escobar-Chavez JJ et al. The tape-stripping technique as a method for drug quantification in skin. J Pharm Pharm Sci. 2008;11:104–30.

    Article  CAS  PubMed  Google Scholar 

  6. Hosomi N et al. Polymorphisms in the promoter of the interleukin-4 receptor alpha chain gene are associated with atopic dermatitis in Japan. J Investig Dermatol. 2004;122:843–5. doi:10.1111/j.0022-202X.2004.22338.x.

    Article  CAS  PubMed  Google Scholar 

  7. Kinoshita H et al. Cytokine milieu modulates release of thymic stromal lymphopoietin from human keratinocytes stimulated with double-stranded RNA. J Allergy Clin Immunol. 2009;123:179–86. doi:10.1016/j.jaci.2008.10.008.

    Article  CAS  PubMed  Google Scholar 

  8. Imai Y et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci U S A. 2013;110:13921–6. doi:10.1073/pnas.1307321110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soumelis V et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3:673–80. doi:10.1038/ni805.

    Article  CAS  PubMed  Google Scholar 

  10. Le TA et al. Inhibition of double-stranded RNA-induced TSLP in human keratinocytes by glucocorticoids. Allergy. 2009;64:1231–2. doi:10.1111/j.1398-9995.2009.02032.x.

    Article  CAS  PubMed  Google Scholar 

  11. Oyoshi MK, Larson RP, Ziegler SF, Geha RS. Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J Allergy Clin Immunol. 2010;126:976–84. doi:10.1016/j.jaci.2010.08.041. 984 e971-975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoo J et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med. 2005;202:541–9. doi:10.1084/jem.20041503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Williams H, Flohr C. How epidemiology has challenged 3 prevailing concepts about atopic dermatitis. J Allergy Clin Immunol. 2006;118:209–13. doi:10.1016/j.jaci.2006.04.043.

    Article  PubMed  Google Scholar 

  14. Werfel T et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138:336–49. doi:10.1016/j.jaci.2016.06.010.

    Article  CAS  PubMed  Google Scholar 

  15. Tischer CG et al. Meta-analysis of mould and dampness exposure on asthma and allergy in eight European birth cohorts: an ENRIECO initiative. Allergy. 2011;66:1570–9. doi:10.1111/j.1398-9995.2011.02712.x.

    Article  CAS  PubMed  Google Scholar 

  16. Bremmer SF, Simpson EL. Dust mite avoidance for the primary prevention of atopic dermatitis: a systematic review and meta-analysis. Pediatr Allergy Immunol. 2015. doi:10.1111/pai.12452.

    PubMed  Google Scholar 

  17. Du Toit G et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372:803–13. doi:10.1056/NEJMoa1414850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Castro-Rodriguez JA, Holberg CJ, Wright AL, Martinez FD. A clinical index to define risk of asthma in young children with recurrent wheezing. Am J Respir Crit Care Med. 2000;162:1403–6. doi:10.1164/ajrccm.162.4.9912111.

    Article  CAS  PubMed  Google Scholar 

  19. Wisniewski JA et al. Sensitization to food and inhalant allergens in relation to age and wheeze among children with atopic dermatitis. Clin Exp Allergy. 2013;43:1160–70. doi:10.1111/cea.12169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thyssen JP, Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol. 2014;134:792–9. doi:10.1016/j.jaci.2014.06.014.

    Article  CAS  PubMed  Google Scholar 

  21. Kelleher M et al. Skin barrier dysfunction measured by transepidermal water loss at 2 days and 2 months predates and predicts atopic dermatitis at 1 year. J Allergy Clin Immunol. 2015;135:930–5. doi:10.1016/j.jaci.2014.12.013. e931.

    Article  PubMed  PubMed Central  Google Scholar 

  22. •• Kelleher MM et al. Skin barrier impairment at birth predicts food allergy at 2 years of age. J Allergy Clin Immunol. 2016;137:1111. doi:10.1016/j.jaci.2015.12.1312. Provides epidemiologic evidence that skin barrier impairment drives allergy development.

    Article  CAS  PubMed  Google Scholar 

  23. Romani N et al. Epidermal Langerhans cells—changing views on their function in vivo. Immunol Lett. 2006;106:119–25. doi:10.1016/j.imlet.2006.05.010.

    Article  CAS  PubMed  Google Scholar 

  24. Novak N, Gros E, Bieber T, Allam JP. Human skin and oral mucosal dendritic cells as ‘good guys’ and ‘bad guys’ in allergic immune responses. Clin Exp Immunol. 2010;161:28–33. doi:10.1111/j.1365-2249.2010.04162.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guttman-Yassky E et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J Allergy Clin Immunol. 2007;119:1210–7. doi:10.1016/j.jaci.2007.03.006.

    Article  CAS  PubMed  Google Scholar 

  26. • Yoshida K et al. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol. 2014;134:856–64. doi:10.1016/j.jaci.2014.08.001. Findings demonstrate important functional differences between the ability of Langerhans cells and inflammatory dendritic epidermal cells to uptake environmental allergens.

    Article  PubMed  Google Scholar 

  27. Meindl S et al. Differential effects of corticosteroids and pimecrolimus on the developing skin immune system in humans and mice. J Allergy Clin Immunol. 2009;129:2184–92. doi:10.1038/jid.2009.50.

    CAS  Google Scholar 

  28. Wollenberg A, Kraft S, Hanau D, Bieber T. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J Investig Dermatol. 1996;106:446–53.

    Article  CAS  PubMed  Google Scholar 

  29. Holm J, Willumsen N, Wurtzen PA, Christensen LH, Lund K. Facilitated antigen presentation and its inhibition by blocking IgG antibodies depends on IgE repertoire complexity. J Allergy Clin Immunol. 2011;127:1029–37. doi:10.1016/j.jaci.2011.01.062.

    Article  CAS  PubMed  Google Scholar 

  30. Dubrac S, Schmuth M, Ebner S. Atopic dermatitis: the role of Langerhans cells in disease pathogenesis. Immunol Cell Biol. 2010;88:400–9. doi:10.1038/icb.2010.33.

    Article  PubMed  Google Scholar 

  31. Phythian-Adams AT et al. CD11c depletion severely disrupts Th2 induction and development in vivo. J Exp Med. 2010;207:2089–96. doi:10.1084/jem.20100734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hammad H et al. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010;207:2097–111. doi:10.1084/jem.20101563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Novak N. An update on the role of human dendritic cells in patients with atopic dermatitis. J Allergy Clin Immunol. 2012;129:879–86. doi:10.1016/j.jaci.2012.01.062.

    Article  CAS  PubMed  Google Scholar 

  34. Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis—part II: immune cell subsets and therapeutic concepts. J Allergy Clin Immunol. 2011;127:1420–32. doi:10.1016/j.jaci.2011.01.054.

    Article  CAS  PubMed  Google Scholar 

  35. Iram N et al. Age-related changes in expression and function of Toll-like receptors in human skin. Development. 2012;139:4210–9. doi:10.1242/dev.083477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clark RA et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 2006;176:4431–9.

    Article  CAS  PubMed  Google Scholar 

  37. de Vries IJ et al. Nonspecific T-cell homing during inflammation in atopic dermatitis: expression of cutaneous lymphocyte-associated antigen and integrin alphaE beta7 on skin-infiltrating T cells. J Allergy Clin Immunol. 1997;100:694–701.

    Article  PubMed  Google Scholar 

  38. Peng W, Novak N. Pathogenesis of atopic dermatitis. Clin Exp Allergy. 2015;45:566–74. doi:10.1111/cea.12495.

    Article  CAS  PubMed  Google Scholar 

  39. Hamilton JD, Ungar B, Guttman-Yassky E. Drug evaluation review: dupilumab in atopic dermatitis. Immunotherapy. 2015;7:1043–58. doi:10.2217/imt.15.69.

    Article  CAS  PubMed  Google Scholar 

  40. Reefer AJ et al. Analysis of CD25hiCD4+ “regulatory” T-cell subtypes in atopic dermatitis reveals a novel T(H)2-like population. J Allergy Clin Immunol. 2008;121:415–22. doi:10.1016/j.jaci.2007.11.003. e413.

    Article  CAS  PubMed  Google Scholar 

  41. Czarnowicki T et al. Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)(+) TH2/TH1 cell imbalance, whereas adults acquire CLA(+) TH22/TC22 cell subsets. J Allergy Clin Immunol. 2015;136:941–51. doi:10.1016/j.jaci.2015.05.049. e943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reekers R, Busche M, Wittmann M, Kapp A, Werfel T. Birch pollen-related foods trigger atopic dermatitis in patients with specific cutaneous T-cell responses to birch pollen antigens. J Allergy Clin Immunol. 1999;104:466–72.

    Article  CAS  PubMed  Google Scholar 

  43. Bonefeld CM, Geisler C. The role of innate lymphoid cells in healthy and inflamed skin. Immunol Lett. 2016. doi:10.1016/j.imlet.2016.01.005.

    PubMed  Google Scholar 

  44. Rak GD et al. IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J Investig Dermatol. 2016;136:487–96. doi:10.1038/JID.2015.406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim BS. Innate lymphoid cells in the skin. J Investig Dermatol. 2015;135:673–8. doi:10.1038/jid.2014.401.

    Article  CAS  PubMed  Google Scholar 

  46. • Roediger B et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol. 2013;14:564–73. doi:10.1038/ni.2584. Identifies a novel role for group 2 innate lymphoid cells as an innate source of IL-5 and IL-13 in skin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salimi M et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210:2939–50. doi:10.1084/jem.20130351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ando T et al. Mast cells are required for full expression of allergen/SEB-induced skin inflammation. J Investig Dermatol. 2013;133:2695–705. doi:10.1038/jid.2013.250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ito Y et al. Basophil recruitment and activation in inflammatory skin diseases. Allergy. 2011;66:1107–13. doi:10.1111/j.1398-9995.2011.02570.x.

    Article  CAS  PubMed  Google Scholar 

  50. Sokol CL et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol. 2009;10:713–20. doi:10.1038/ni.1738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Otsuka A, Kabashima K. Contribution of basophils to cutaneous immune reactions and Th2-mediated allergic responses. Front Immunol. 2015;6:393. doi:10.3389/fimmu.2015.00393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Noti M et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol. 2014;133:1390–9. doi:10.1016/j.jaci.2014.01.021. 1399 e1391-1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawakami T, Ando T, Kimura M, Wilson BS, Kawakami Y. Mast cells in atopic dermatitis. Curr Opin Immunol. 2009;21:666–78. doi:10.1016/j.coi.2009.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Galand C et al. IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J Allergy Clin Immunol. 2016. doi:10.1016/j.jaci.2016.03.056.

    Google Scholar 

  55. Morita H et al. An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity. 2015;43:175–86. doi:10.1016/j.immuni.2015.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bartnikas LM et al. Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. J Allergy Clin Immunol. 2013;131(451–460):e451–456. doi:10.1016/j.jaci.2012.11.032.

    Article  CAS  Google Scholar 

  57. van Voorst Vader PC, Lier JG, Woest TE, Coenraads PJ, Nater JP. Patch tests with house dust mite antigens in atopic dermatitis patients: methodological problems. Acta Derm Venereol. 1991;71:301–5.

    PubMed  Google Scholar 

  58. Bashir SJ, Chew AL, Anigbogu A, Dreher F, Maibach HI. Physical and physiological effects of stratum corneum tape stripping. Skin Res Technol. 2001;7:40–8.

    Article  CAS  PubMed  Google Scholar 

  59. Eckert RL, Rorke EA. Molecular biology of keratinocyte differentiation. Environ Health Perspect. 1989;80:109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zeeuwen PL. Epidermal differentiation: the role of proteases and their inhibitors. Eur J Cell Biol. 2004;83:761–73. doi:10.1078/0171-9335-00388.

    Article  CAS  PubMed  Google Scholar 

  61. Cork MJ et al. New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol. 2006;118:3–21. doi:10.1016/j.jaci.2006.04.042.

    Article  CAS  PubMed  Google Scholar 

  62. Visscher M, Narendran V. The ontogeny of skin. Adv Wound Care (New Rochelle). 2014;3:291–303. doi:10.1089/wound.2013.0467.

    Article  Google Scholar 

  63. Agrawal R, Woodfolk JA. Skin barrier defects in atopic dermatitis. Curr Allergy Asthma Rep. 2014;14:433. doi:10.1007/s11882-014-0433-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Elias PM, Schmuth M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Allergy Asthma Rep. 2009;9:265–72.

    Article  CAS  PubMed  Google Scholar 

  65. Hachem JP et al. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Investig Dermatol. 2006;126:1609–21. doi:10.1038/sj.jid.5700288.

    Article  CAS  PubMed  Google Scholar 

  66. Joensen UN et al. Associations of filaggrin gene loss-of-function variants with urinary phthalate metabolites and testicular function in young Danish men. Environ Health Perspect. 2014;122:345–50. doi:10.1289/ehp.1306720.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mukhopadhyay P. Cleansers and their role in various dermatological disorders. Indian J Dermatol. 2011;56:2–6. doi:10.4103/0019-5154.77542.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bikowski J. The use of cleansers as therapeutic concomitants in various dermatologic disorders. Cutis. 2001;68:12–9.

    CAS  PubMed  Google Scholar 

  69. Hachem JP et al. Acute acidification of stratum corneum membrane domains using polyhydroxyl acids improves lipid processing and inhibits degradation of corneodesmosomes. J Investig Dermatol. 2010;130:500–10. doi:10.1038/jid.2009.249.

    Article  CAS  PubMed  Google Scholar 

  70. Gfatter R, Hackl P, Braun F. Effects of soap and detergents on skin surface pH, stratum corneum hydration and fat content in infants. Dermatology. 1997;195:258–62.

    Article  CAS  PubMed  Google Scholar 

  71. Cetta F, Lambert GH, Ros SP. Newborn chemical exposure from over-the-counter skin care products. Clin Pediatr (Phila). 1991;30:286–9.

    Article  CAS  Google Scholar 

  72. Jungersted JM et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65:911–8. doi:10.1111/j.1398-9995.2010.02326.x.

    Article  CAS  PubMed  Google Scholar 

  73. Harding CR, Aho S, Bosko CA. Filaggrin—revisited. Int J Cosmet Sci. 2013;35:412–23. doi:10.1111/ics.12049.

    Article  CAS  PubMed  Google Scholar 

  74. Hubiche T et al. Analysis of SPINK 5, KLK 7 and FLG genotypes in a French atopic dermatitis cohort. Acta Derm Venereol. 2007;87:499–505. doi:10.2340/00015555-0329.

    Article  CAS  PubMed  Google Scholar 

  75. Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim Biophys Acta. 2014;1841:422–34. doi:10.1016/j.bbalip.2013.08.011.

    Article  CAS  PubMed  Google Scholar 

  76. Brandner JM et al. Epidermal tight junctions in health and disease. Tissue Barriers. 2015;3:e974451. doi:10.4161/21688370.2014.974451.

    Article  CAS  PubMed  Google Scholar 

  77. Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141:277–99. doi:10.1016/j.jconrel.2009.10.016.

    Article  CAS  PubMed  Google Scholar 

  78. Hanel KH et al. Control of the physical and antimicrobial skin barrier by an IL-31-IL-1 signaling network. J Immunol. 2016;196:3233–44. doi:10.4049/jimmunol.1402943.

    Article  PubMed  CAS  Google Scholar 

  79. Yu HS et al. Claudin-1 polymorphism modifies the effect of mold exposure on the development of atopic dermatitis and production of IgE. J Allergy Clin Immunol. 2015;135:827-830 e825. doi:10.1016/j.jaci.2014.10.040.

  80. Hoeger PH, Enzmann CC. Skin physiology of the neonate and young infant: a prospective study of functional skin parameters during early infancy. Pediatr Dermatol. 2002;19:256–62.

    Article  PubMed  Google Scholar 

  81. Stamatas GN, Nikolovski J, Mack MC, Kollias N. Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies. Int J Cosmet Sci. 2011;33:17–24. doi:10.1111/j.1468-2494.2010.00611.x.

    Article  CAS  PubMed  Google Scholar 

  82. Stamatas GN, Nikolovski J, Luedtke MA, Kollias N, Wiegand BC. Infant skin microstructure assessed in vivo differs from adult skin in organization and at the cellular level. Pediatr Dermatol. 2010;27:125–31. doi:10.1111/j.1525-1470.2009.00973.x.

    Article  PubMed  Google Scholar 

  83. Nikolovski J, Stamatas GN, Kollias N, Wiegand BC. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Investig Dermatol. 2008;128:1728–36. doi:10.1038/sj.jid.5701239.

    Article  CAS  PubMed  Google Scholar 

  84. Telofski LS, Morello 3rd AP, Mack Correa MC, Stamatas GN. The infant skin barrier: can we preserve, protect, and enhance the barrier? Dermatol Res Pract. 2012;2012:198789. doi:10.1155/2012/198789.

    PubMed  PubMed Central  Google Scholar 

  85. Kelleher MM et al. Newborn transepidermal water loss values: a reference dataset. Pediatr Dermatol. 2013;30:712–6. doi:10.1111/pde.12106.

    Article  PubMed  Google Scholar 

  86. Fluhr JW, Pfisterer S, Gloor M. Direct comparison of skin physiology in children and adults with bioengineering methods. Pediatr Dermatol. 2000;17:436–9.

    Article  CAS  PubMed  Google Scholar 

  87. Kikuchi K, Kobayashi H, O’Goshi K, Tagami H. Impairment of skin barrier function is not inherent in atopic dermatitis patients: a prospective study conducted in newborns. Pediatr Dermatol. 2006;23:109–13. doi:10.1111/j.1525-1470.2006.00191.x.

    Article  PubMed  Google Scholar 

  88. Fluhr JW et al. Infant epidermal skin physiology: adaptation after birth. Br J Dermatol. 2012;166:483–90. doi:10.1111/j.1365-2133.2011.10659.x.

    Article  CAS  PubMed  Google Scholar 

  89. Yosipovitch G, Maayan-Metzger A, Merlob P, Sirota L. Skin barrier properties in different body areas in neonates. Pediatrics. 2000;106:105–8.

    Article  CAS  PubMed  Google Scholar 

  90. Visscher MO, Chatterjee R, Munson KA, Pickens WL, Hoath SB. Changes in diapered and nondiapered infant skin over the first month of life. Pediatr Dermatol. 2000;17:45–51.

    Article  CAS  PubMed  Google Scholar 

  91. Visscher MO et al. Vernix caseosa in neonatal adaptation. J Perinatol. 2005;25:440–6. doi:10.1038/sj.jp.7211305.

    Article  PubMed  Google Scholar 

  92. Galzote CDM, Estanislao R, Mathew N. J Am Acad Dermatol. 2007;56:AB158.

    Google Scholar 

  93. Hiscock H. The crying baby. Aust Fam Physician. 2006;35:680–4.

    PubMed  Google Scholar 

  94. Atherton D. Maintaining healthy skin in infancy using prevention of irritant napkin dermatitis as a model. Community Pract. 2005;78:255–7.

    PubMed  Google Scholar 

  95. Hunziker T, Brand CU, Kapp A, Waelti ER, Braathen LR. Increased levels of inflammatory cytokines in human skin lymph derived from sodium lauryl sulphate-induced contact dermatitis. Br J Dermatol. 1992;127:254–7.

    Article  CAS  PubMed  Google Scholar 

  96. Tupker RA, Pinnagoda J, Coenraads PJ, Nater JP. Evaluation of detergent-induced irritant skin reactions by visual scoring and transepidermal water loss measurement. Dermatol Clin. 1990;8:33–5.

    CAS  PubMed  Google Scholar 

  97. Tupker RA, Pinnagoda J, Nater JP. The transient and cumulative effect of sodium lauryl sulphate on the epidermal barrier assessed by transepidermal water loss: inter-individual variation. Acta Derm Venereol. 1990;70:1–5.

    CAS  PubMed  Google Scholar 

  98. Loffler H, Happle R. Influence of climatic conditions on the irritant patch test with sodium lauryl sulphate. Acta Derm Venereol. 2003;83:338–41.

    Article  PubMed  Google Scholar 

  99. Loffler H, Happle R. Profile of irritant patch testing with detergents: sodium lauryl sulfate, sodium laureth sulfate and alkyl polyglucoside. Contact Dermatitis. 2003;48:26–32.

    Article  CAS  PubMed  Google Scholar 

  100. Torma H, Lindberg M, Berne B. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo. J Investig Dermatol. 2008;128:1212–9. doi:10.1038/sj.jid.5701170.

    Article  PubMed  CAS  Google Scholar 

  101. Simpson EL et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134:818–23. doi:10.1016/j.jaci.2014.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Horimukai K et al. Application of moisturizer to neonates prevents development of atopic dermatitis. J Allergy Clin Immunol. 2014;134:824–30. doi:10.1016/j.jaci.2014.07.060. e826.

    Article  PubMed  Google Scholar 

  103. Czarnowicki T et al. Petrolatum: barrier repair and antimicrobial responses underlying this “inert” moisturizer. J Allergy Clin Immunol. 2016;137(1091–1102):e1091–1097. doi:10.1016/j.jaci.2015.08.013.

    Article  CAS  Google Scholar 

  104. Tordesillas L et al. Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest. 2014;124:4965–75. doi:10.1172/JCI75660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia A. Wisniewski.

Ethics declarations

Funding

This work was supported by the UVA Child Health Research Grant (J.W.).

Conflict of Interest

Drs. Smith, Knaysi, Wilson, and Wisniewski declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Allergens

Anna R. Smith and George Knaysi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, A.R., Knaysi, G., Wilson, J.M. et al. The Skin as a Route of Allergen Exposure: Part I. Immune Components and Mechanisms. Curr Allergy Asthma Rep 17, 6 (2017). https://doi.org/10.1007/s11882-017-0674-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-017-0674-5

Keywords

Navigation