Skip to main content

Advertisement

Log in

Recent advances in the genetics of spastic paraplegias

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Hereditary spastic paraplegias (HSPs) are genetically heterogeneous mendelian disorders characterized by weakness and spasticity in the lower limbs associated with additional neurologic signs in “complex” or “complicated” forms. Major advances have been made during the past two decades in our understanding of their molecular bases. The mapping of 34 genes (17 of which have been identified) involved in this clinically diverse group of disorders has highlighted their great genetic heterogeneity. From the combined genetic and clinical information obtained, a new classification is now emerging that will help to better diagnose this condition, evaluate disease progression, guide follow-up, and permit genetic counselling. Evidence is now accumulating that at least part of the physiopathology results from abnormal intracellular trafficking, as well as from altered cell recognition and signaling, oligodendroglial dysfunction, mitochondrial defects, and impaired cholesterol and/or neurosteroid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Harding AE: Classification of the hereditary ataxias and paraplegias. Lancet 1983, 1:1151–1155.

    Article  PubMed  CAS  Google Scholar 

  2. Behan WM, Maia M: Strumpell’s familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry 1974, 37:8–20.

    PubMed  CAS  Google Scholar 

  3. Deluca GC, Ebers GC, Esiri MM: The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 2004, 30:576–584.

    Article  PubMed  CAS  Google Scholar 

  4. Franca MC Jr, D’Abreu A, Maurer-Morelli CV, et al.: Prospective neuroimaging study in hereditary spastic paraplegia with thin corpus callosum. Mov Disord 2007, 22:1556–1562.

    Article  PubMed  Google Scholar 

  5. Shibasaki Y, Tanaka H, Iwabuchi K, et al.: Linkage of autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum to chromosome 15q13-15. Ann Neurol 2000, 48:108–112.

    Article  PubMed  CAS  Google Scholar 

  6. Stevanin G, Montagna G, Azzedine H, et al.: Spastic paraplegia with thin corpus callosum: description of 20 new families, refinement of the SPG11 locus, candidate gene analysis and evidence of genetic heterogeneity. Neurogenetics 2006, 7:149–156.

    Article  PubMed  Google Scholar 

  7. Winner B, Gross C, Uyanik G, et al.: Thin corpus callosum and amyotrophy in spastic paraplegia-case report and review of literature. Clin Neurol Neurosurg 2006, 692–698.

  8. Boukhris A, Stevanin G, Feki I, et al.: Hereditary spastic paraplegia with mental impairment and thin corpus callosum in Tunisia: SPG11, SPG15 and further genetic heterogeneity. Arch Neurol 2008, 65:393–402.

    Article  PubMed  Google Scholar 

  9. Fink JK: Hereditary spastic paraplegia. Curr Neurol Neurosci Rep 2006, 6:65–76.

    Article  PubMed  CAS  Google Scholar 

  10. Polo JM, Calleja J, Combarros O, Berciano J: Hereditary ataxias and paraplegias in Cantabria, Spain. An epidemiological and clinical study. Brain 1991, 114:855–866.

    Article  PubMed  Google Scholar 

  11. Coutinho P, Barros J, Zemmouri R, et al.: Clinical heterogeneity of autosomal recessive spastic paraplegias: analysis of 106 patients in 46 families. Arch Neurol 1999, 56:943–949.

    Article  PubMed  CAS  Google Scholar 

  12. McMonagle P, Webb S, Hutchinson M: The prevalence of “pure” autosomal dominant hereditary spastic paraparesis in the island of Ireland. J Neurol Neurosuug Psychiatry 2002, 72:43–46.

    Article  CAS  Google Scholar 

  13. Filla A, De Michele MG, Marconi R, et al.: Prevalence of hereditary ataxias and spastic paraplegias in Molise, a region of Italy. J Neurol 1992, 239:351–353.

    Article  PubMed  CAS  Google Scholar 

  14. McDermott CJ, Burness CE, Kirby J, et al.: Clinical features of hereditary spastic paraplegia due to spastin mutation. Neurology 2006, 67:45–51.

    Article  PubMed  CAS  Google Scholar 

  15. Beetz C, Nygren AO, Schickel J, et al.: High frequency of partial SPAST deletions in autosomal dominant hereditary spastic paraplegia. Neurology 2006, 67:1926–1930.

    Article  PubMed  CAS  Google Scholar 

  16. Depienne C, Fedirko E, Forlani S, et al.: Exon deletions of SPG4 are a frequent cause of hereditary spastic paraplegia. J Med Genet 2007, 44:281–284.

    Article  PubMed  CAS  Google Scholar 

  17. Mitne-Neto M, Kok F, Beetz C, et al.: A multi-exonic SPG4 duplication underlies sex-dependent penetrance of hereditary spastic paraplegia in a large Brazilian pedigree. Eur J Hum Genet 2007, 15:1276–1279.

    Article  PubMed  CAS  Google Scholar 

  18. Orlacchio A, Patrono C, Borreca A, et al.: Spastic paraplegia in Romania: high prevalence of SPG4 mutations. J Neurol Neurosurg Psychiatry 2007 Oct 30 (Epub ahead of print).

  19. Rainier S, Sher C, Reish O, et al.: De novo occurrence of novel SPG3A/atlastin mutation presenting as cerebral palsy. Arch Neurol 2006, 63:445–447.

    Article  PubMed  Google Scholar 

  20. Ivanova N, Claeys KG, Deconinck T, et al.: Hereditary spastic paraplegia 3A associated with axonal neuropathy. Arch Neurol 2007, 64:706–713.

    Article  PubMed  Google Scholar 

  21. Meijer IA, Dion P, Laurent S, et al.: Characterization of a novel SPG3A deletion in a French-Canadian family. Ann Neurol 2007, 61:599–603.

    Article  PubMed  CAS  Google Scholar 

  22. Abel A, Fonknechten N, Hofer A, et al.: Early onset autosomal dominant spastic paraplegia caused by novel mutations in SPG3A. Neurogenetics 2004, 5:239–243.

    Article  PubMed  CAS  Google Scholar 

  23. Namekawa M, Ribai P, Nelson I, et al.: SPG3A is the most frequent cause of hereditary spastic paraplegia with onset before age 10 years. Neurology 2006, 66:112–114.

    Article  PubMed  CAS  Google Scholar 

  24. Beetz C, Nygren AO, Deufel T, Reid E: An SPG3A whole gene deletion neither co-segregates with disease nor modifies phenotype in a hereditary spastic paraplegia family with a pathogenic SPG4 deletion. Neurogenetics 2007, 8:317–318.

    Article  PubMed  Google Scholar 

  25. Zuchner S, Wang G, Tran-Viet KN, et al.: Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am J Hum Genet 2006, 79:365–369.

    Article  PubMed  CAS  Google Scholar 

  26. Valdmanis PN, Meijer IA, Reynolds A, et al.: Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am J Hum Genet 2007, 80:152–161.

    Article  PubMed  CAS  Google Scholar 

  27. Blair MA, Ma S, Hedera P: Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia. Neurogenetics 2006, 7:47–50.

    Article  PubMed  CAS  Google Scholar 

  28. Mannan AU, Krawen P, Sauter SM, et al.: ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. Am J Hum Genet 2006, 79:351–357.

    Article  PubMed  CAS  Google Scholar 

  29. Klebe S, Lacour A, Durr A, et al.: NIPA1 (SPG6) mutations are a rare cause of autosomal dominant spastic paraplegia in Europe. Neurogenetics 2007, 8:155–157.

    Article  PubMed  Google Scholar 

  30. Beetz C, Schule R, Klebe S, et al.: Screening of hereditary spastic paraplegia patients for alterations at NIPA1 mutational hotspots. J Neurol Sci 2008 Jan 11 (Epub ahead of print).

  31. Windpassinger C, Auer-Grumbach M, Irobi J, et al.: Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nature Genet 2004, 36:271–276.

    Article  PubMed  CAS  Google Scholar 

  32. Hanein S, Durr A, Ribai P, et al.: A novel locus for autosomal dominant “uncomplicated” hereditary spastic paraplegia maps to chromosome 8p21.1-q13.3. Hum Genet 2007, 122:261–273.

    Article  PubMed  CAS  Google Scholar 

  33. Tsaousidou MK, Ouahchi K, Warner TT, et al.: Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet 2008, 82:510–515.

    Article  PubMed  CAS  Google Scholar 

  34. Klebe S, Durr A, Bouslam N et al.: Spastic paraplegia 5: locus refinement, candidate gene analysis and clinical description. Am J Med Genet B Neuropsychiatr Genet 2007, 144:854–861.

    Google Scholar 

  35. Stevanin G, Santorelli FM, Azzedine H, et al.: Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet 2007, 39:366–372.

    Article  PubMed  CAS  Google Scholar 

  36. Hehr U, Bauer P, Winner B, et al.: Long-term course and mutational spectrum of spatacsin-linked spastic paraplegia. Ann Neurol 2007, 62:656–665.

    Article  PubMed  CAS  Google Scholar 

  37. Del Bo R, Di Fonzo A, Ghezzi S, et al.: SPG11: a consistent clinical phenotype in a family with homozygous spatacsin truncating mutation. Neurogenetics 2007, 8:301–305.

    Article  PubMed  Google Scholar 

  38. Stevanin G, Azzedine H, Denora P, et al.: Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 2008, 131:772–784.

    Article  PubMed  Google Scholar 

  39. Hanein S, Martin E, Boukhris A, et al.: Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal recessive spastic paraplegia including Kjellin syndrome. Am J Hum Genet 2008 (in press).

  40. Elleuch N, Depienne C, Benomar A, et al.: Mutation analysis of the paraplegin gene (SPG7) in patients with hereditary spastic paraplegia. Neurology 2006, 66:654–659.

    Article  PubMed  CAS  Google Scholar 

  41. Arnoldi A, Tonelli A, Crippa F, et al.: A clinical, genetic, and biochemical characterization of SPG7 mutations in a large cohort of patients with hereditary spastic paraplegia. Hum Mutat 2008 Jan 16 (Epub ahead of print).

  42. Di Bella D, Mariotti C, Plumari M, et al.: Molecular and functional analysis of paraplegin gene (SPG7) mutations in patients with familial and sporadic spastic paraplegia [abstract 848]. Paper presented at the annual meeting of The American Society of Human Genetics. San Diego, CA; October 23–27, 2007. Available at http://www.ashg.org/genetics/ashg07s/index.shtml.

  43. Casari G, De Fusco M, Ciarmatori S, et al.: Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998, 93:973–983.

    Article  PubMed  CAS  Google Scholar 

  44. Depienne C, Stevanin G, Brice A, Durr A: Hereditary spastic paraplegias: an update. Curr Opin Neurol 2007, 20:674–680.

    Article  PubMed  CAS  Google Scholar 

  45. Ribai P, Depienne C, Fedirko E, et al.: Mental deficiency in three families with SPG4 spastic paraplegia. Eur J Hum Genet 2008, 16:97–104.

    Article  PubMed  CAS  Google Scholar 

  46. Bouslam N, Benomar A, Azzedine H, et al.: Mapping of a new form of pure autosomal recessive spastic paraplegia (SPG28). Ann Neurol 2005, 57:567–571.

    Article  PubMed  CAS  Google Scholar 

  47. Klebe S, Azzedine H, Durr A, et al.: Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3. Brain 2006, 129:1456–1462.

    Article  PubMed  Google Scholar 

  48. Warnecke T, Duning T, Schwan A, et al.: A novel form of autosomal recessive hereditary spastic paraplegia caused by a new SPG7 mutation. Neurology 2007, 69:368–375.

    Article  PubMed  CAS  Google Scholar 

  49. Martinez MF, Kobayashi H, Pegoraro E, et al.: Genetic localization of a new locus for recessive familial spastic paraparesis to 15q13-15. Neurology 1999, 53:50–56.

    Google Scholar 

  50. Olmez A, Uyanik G, Ozgul RK, et al.: Further clinical and genetic characterization of SPG11: hereditary spastic paraplegia with thin corpus callosum. Neuropediatrics 2006, 37:59–66.

    Article  PubMed  CAS  Google Scholar 

  51. Elleuch N, Bouslam N, Hanein S, et al.: Refinement of the SPG15 candidate interval and phenotypic heterogeneity in three large Arab families. Neurogenetics 2007, 8:307–315.

    Article  PubMed  Google Scholar 

  52. Boukhris A, Feki I, Denis E, et al.: Spastic paraplegia 15: linkage and clinical description of three Tunisian families. Mov Disord 2008, 23:429–433.

    Article  PubMed  Google Scholar 

  53. Al Yahyaee S, Al Gazali LI, De Jonghe P, et al.: A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy. Neurology 2006, 66:1230–1234.

    Article  Google Scholar 

  54. Orlacchio A, Kawarai T, Totaro A, et al.: Hereditary spastic paraplegia: clinical genetic study of 15 families. Arch Neurol 2004, 61:849–855.

    Article  PubMed  Google Scholar 

  55. Durr A, Camuzat A, Colin E, et al.: Atlastin1 mutations are frequent in young-onset autosomal dominant spastic paraplegia. Arch Neurol 2004, 61:1867–1872.

    Article  PubMed  Google Scholar 

  56. D’Amico A, Tessa A, Sabino A, et al.: Incomplete penetrance in an SPG3A-linked family with a new mutation in the atlastin gene. Neurology 2004, 62:2138–2139.

    PubMed  CAS  Google Scholar 

  57. Fonknechten N, Mavel D, Byrne P, et al.: Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum Mol Genet 2000, 9:637–644.

    Article  PubMed  CAS  Google Scholar 

  58. Svenson IK, Kloos MT, Gaskell PC, et al.: Intragenic modifiers of hereditary spastic paraplegia due to spastin gene mutations. Neurogenetics 2004, 5:157–164.

    Article  PubMed  CAS  Google Scholar 

  59. Chinnery PF, Keers SM, Holden MJ, et al.: Infantile hereditary spastic paraparesis due to codominant mutations in the spastin gene. Neurology 2004, 63:710–712.

    PubMed  CAS  Google Scholar 

  60. Schickel J, Pamminger T, Ehrsam A, et al.: Isoform-specific increase of spastin stability by N-terminal missense variants including intragenic modifiers of SPG4 hereditary spastic paraplegia. Eur J Neurol 2007, 14:1322–1328.

    Article  PubMed  CAS  Google Scholar 

  61. Pantakani DV, Zechner U, Arygriou L, et al.: Compound heterozygosity in the SPG4 gene causes hereditary spastic paraplegia. Clin Genet 2008, 73:268–272.

    PubMed  CAS  Google Scholar 

  62. Depienne C, Fedirko E, Faucheux JM, et al.: A de novo SPAST mutation leading to somatic mosaicism is associated with a later age at onset in HSP. Neurogenetics 2007, 8:231–233.

    Article  PubMed  Google Scholar 

  63. Blair MA, Riddle ME, Wells JF, et al.: Infantile onset of hereditary spastic paraplegia poorly predicts the genotype. Pediatr Neurol 2007, 36:382–386.

    Article  PubMed  Google Scholar 

  64. Fink JK, Heiman-Patterson T, Bird T, et al.: Hereditary spastic paraplegia: advances in genetic research. Hereditary Spastic Paraplegia Working Group. Neurology 1996, 46:1507–1514.

    PubMed  CAS  Google Scholar 

  65. Patrono C, Scarano V, Cricchi F, et al.: Autosomal dominant hereditary spastic paraplegia: DHPLC-based mutation analysis of SPG4 reveals eleven novel mutations. Hum Mutat 2005, 25:506–506.

    Article  PubMed  Google Scholar 

  66. Depienne C, Tallaksen C, Lephay JY, et al.: Spastin mutations are frequent in sporadic spastic paraparesis and their spectrum is different from the one observed in familial cases. J Med Genet 2006, 43:259–265.

    Article  PubMed  CAS  Google Scholar 

  67. Crippa F, Panzeri C, Martinuzzi A, et al.: Eight novel mutations in SPG4 in a large sample of patients with hereditary spastic paralegia. J Paediatr Child Health 2006, 63:750–755.

    Google Scholar 

  68. Ebbing B, Mann K, Starosta A, et al.: Effect of spastic paraplegia mutations in KIF5A kinesin on transport activity. Hum Mol Genet 2008 Jan 18 (Epub ahead of print).

  69. White SR, Evans KJ, Lary J, et al.: Recognition of C-terminal amino acids in tubulin by pore loops in spastin is important for microtubule severing. J Cell Biol 2007, 176:995–1005.

    Article  PubMed  CAS  Google Scholar 

  70. Tarrade A, Fassier C, Courageot S, et al.: A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum Mol Genet 2006, 15:3544–3558.

    Article  PubMed  CAS  Google Scholar 

  71. Errico A, Claudiani P, D’Addio M, Rugarli EI: Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon. Hum Mol Genet 2004, 13:2121–2132.

    Article  PubMed  CAS  Google Scholar 

  72. Evans KJ, Gomes ER, Reisenweber SM, et al.: Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J Cell Biol 2005, 168:599–606.

    Article  PubMed  CAS  Google Scholar 

  73. Trotta N, Orso G, Rossetto MG, et al.: The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Curr Biol 2004, 14:1135–1147.

    Article  PubMed  CAS  Google Scholar 

  74. Sherwood NT, Sun Q, Xue M, et al.: Drosophila spastin regulates synaptic microtubule networks and is required for normal motor function. PLoS Biol 2004, 2:e429.

    Article  PubMed  CAS  Google Scholar 

  75. Matsushita-Ishiodori Y, Yamanaka K, Ogura T: The C. elegans homologue of the spastic paraplegia protein, spastin, disassembles microtubules. Biochem Biophys Res Commun 2007, 359:157–162.

    Article  PubMed  CAS  Google Scholar 

  76. Roll-Mecak A, Vale RD: Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 2008, 451:363–367.

    Article  PubMed  CAS  Google Scholar 

  77. Salinas S, Carazo-Salas RE, Proukakis C, et al.: Human spastin has multiple microtubule-related functions. J Neurochem 2005, 95:1411–1420.

    Article  PubMed  CAS  Google Scholar 

  78. Reid E, Connell J, Edwards TL, et al.: The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum Mol Genet 2005, 14:19–38.

    Article  PubMed  CAS  Google Scholar 

  79. Mannan AU, Boehm J, Sauter SM et al.: Spastin, the most commonly mutated protein in hereditary spastic paraplegia interacts with Reticulon 1 an endoplasmic reticulum protein. Neurogenetics 2006, 7:93–103.

    Article  PubMed  CAS  Google Scholar 

  80. Evans K, Keller C, Pavur K, et al.: Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance. Proc Natl Acad Sci U S A 2006, 103:10666–10671.

    Article  PubMed  CAS  Google Scholar 

  81. Sanderson CM, Connell JW, Edwards TL, et al.: Spastin and atlastin, two proteins mutated in autosomal-dominant hereditary spastic paraplegia, are binding partners. Hum Mol Genet 2006, 15:307–318.

    Article  PubMed  CAS  Google Scholar 

  82. Zhu PP, Patterson A, Lavoie B, et al.: Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J Biol Chem 2003, 278:49063–49071.

    Article  PubMed  CAS  Google Scholar 

  83. Zhu PP, Soderblom C, Tao-Cheng JH, et al.: SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Hum Mol Genet 2006, 15:1343–1353.

    Article  PubMed  CAS  Google Scholar 

  84. Namekawa M, Muriel MP, Janer A, et al.: Mutations in the SPG3A gene encoding the GTPase atlastin interfere with vesicle trafficking in the ER/Golgi interface and Golgi morphogenesis. Mol Cell Neurosci 2007, 35:1–13.

    Article  PubMed  CAS  Google Scholar 

  85. Bakowska JC, Jupille H, Fatheddin P, et al.: Troyer syndrome protein spartin is mono-ubiquitinated and functions in EGF receptor trafficking. Mol Biol Cell 2007, 18:1683–1692.

    Article  PubMed  CAS  Google Scholar 

  86. Robay D, Patel H, Simpson MA, et al.: Endogenous spartin, mutated in hereditary spastic paraplegia, has a complex subcellular localization suggesting diverse roles in neurons. Exp Cell Res 2006, 312:2764–2777.

    Article  PubMed  CAS  Google Scholar 

  87. Lu J, Rashid F, Byrne PC: The hereditary spastic paraplegia protein spartin localises to mitochondria. J Neurochem 2006, 98:1908–1919.

    Article  PubMed  CAS  Google Scholar 

  88. Goytain A, Hines RM, El Husseini A, Quamme GA: NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J Biol Chem 2007, 282:8060–8068.

    Article  PubMed  CAS  Google Scholar 

  89. Wang X, Shaw WR, Tsang HT, et al.: Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nat Neurosci 2007, 10:177–185.

    Article  PubMed  CAS  Google Scholar 

  90. Zhao C, Takita J, Tanaka Y, et al.: Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 2001, 105:587–597.

    Article  PubMed  CAS  Google Scholar 

  91. Delague V, Jacquier A, Hamadouche T, et al.: Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am J Hum Genet 2007, 81:1–16.

    Article  PubMed  CAS  Google Scholar 

  92. Stendel C, Roos A, Deconinck T, et al.: Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am J Hum Genet 2007, 81:158–164.

    Article  PubMed  CAS  Google Scholar 

  93. Hadano S, Hand CK, Osuga H, et al.: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 2001, 29:166–173.

    Article  PubMed  CAS  Google Scholar 

  94. Yang Y, Hentati A, Deng HX, et al.: The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 2001, 29:160–165.

    Article  PubMed  CAS  Google Scholar 

  95. Deng HX, Zhai H, Fu R, et al.: Distal axonopathy in an alsin-deficient mouse model. Hum Mol Genet 2007, 16:2911–2920.

    Article  PubMed  CAS  Google Scholar 

  96. Devon RS, Orban PC, Gerrow K, et al.: Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities. Proc Natl Acad Sci U S A 2006, 103:9595–9600.

    Article  PubMed  CAS  Google Scholar 

  97. Panzeri C, De Palma C, Martinuzzi A, et al.: The first ALS2 missense mutation associated with JPLS reveals new aspects of alsin biological function. Brain 2006, 129:1710–1719.

    Article  PubMed  Google Scholar 

  98. Bouhouche A, Benomar A, Bouslam N, et al.: Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J Med Genet 2006, 43:441–443.

    Article  PubMed  CAS  Google Scholar 

  99. Hansen JJ, Durr A, Cournu-Rebeix I, et al.: Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 2002, 70:1328–1332.

    Article  PubMed  CAS  Google Scholar 

  100. Gupta S, Knowlton AA: Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 2002, 106:2727–2733.

    Article  PubMed  CAS  Google Scholar 

  101. Atorino L, Silvestri L, Koppen M, et al.: Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 2003, 163:777–787.

    Article  PubMed  CAS  Google Scholar 

  102. Nolden M, Ehses S, Koppen M, et al.: The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 2005, 123:277–289.

    Article  PubMed  CAS  Google Scholar 

  103. Koppen M, Metodiev MD, Casari G, et al.: Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol Cell Biol 2007, 27:758–767.

    Article  PubMed  CAS  Google Scholar 

  104. Duvezin-Caubet S, Koppen M, Wagener J, et al.: OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol Biol Cell 2007, 18:3582–3590.

    Article  PubMed  CAS  Google Scholar 

  105. Ferreirinha F, Quattrini A, Pirozzi M, et al.: Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 2004, 113:231–242.

    PubMed  CAS  Google Scholar 

  106. Rosenthal A, Jouet M, Kenwrick S: Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 1992, 2:107–112.

    Article  PubMed  CAS  Google Scholar 

  107. Dahme M, Bartsch U, Martini R, et al.: Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 1997, 17:346–349.

    Article  PubMed  CAS  Google Scholar 

  108. Hudson LD, Puckett C, Berndt J, et al.: Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder. Proc Natl Acad Sci U S A 1989, 86:8128–8131.

    Article  PubMed  CAS  Google Scholar 

  109. Garbern JY, Yool DA, Moore GJ, et al.: Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 2002, 125:551–561.

    Article  PubMed  Google Scholar 

  110. Wood JD, Landers JA, Bingley M, et al.: The microtubule-severing protein spastin is essential for axon outgrowth in the zebrafish embryo. Hum Mol Genet 2006, 15:2763–2771.

    Article  PubMed  CAS  Google Scholar 

  111. Ito D, Suzuki N: Molecular pathogenesis of seipin/BSCL2-related motor neuron diseases. Ann Neurol 2007, 61:237–250.

    Article  PubMed  CAS  Google Scholar 

  112. Andersson S, Gustafsson N, Warner M, Gustafsson JA: Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci U S A 2005, 102:3857–3862.

    Article  PubMed  CAS  Google Scholar 

  113. Orso G, Martinuzzi A, Rossetto MG, et al.: Disease-related phenotypes in a Drosophila model of hereditary spastic paraplegia are ameliorated by treatment with vinblastine. J Clin Invest 2005, 115:3026–3034.

    Article  PubMed  CAS  Google Scholar 

  114. Pirozzi M, Quattrini A, Andolfi G, et al.: Intramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia. J Clin Invest 2006, 116:202–208.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Stevanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevanin, G., Ruberg, M. & Brice, A. Recent advances in the genetics of spastic paraplegias. Curr Neurol Neurosci Rep 8, 198–210 (2008). https://doi.org/10.1007/s11910-008-0032-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-008-0032-z

Keywords

Navigation