Skip to main content

Advertisement

Log in

Genetics of ANCA-associated Vasculitides

  • VASCULITIS (LR ESPINOZA, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The distribution of the anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitides (AAV) is not uniform across geographical regions and ethnic and racial groups, suggesting that genetic and environmental factors affect the pathogenesis of these diseases. In addition, genetic factors affect not only the clinical syndrome phenotypes and their prognosis, but also ANCA specificity; these data suggest that AAV may need reclassification. Several genes have been evaluated, including ANCA targets and those of the immune system, for example co-stimulatory molecules, signaling regulators, cytokines, Fc and other receptors, and other proteins. This article provides a review of genetic factors affecting the pathogenesis and prognosis of AAV. Further studies to determine the effect of genetic factors on the clinical syndrome phenotypes and ANCA specificity need to be performed across different ethnic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Gatenby PA. Anti-neutrophil cytoplasmic antibody-associated systemic vasculitis: nature or nurture? Intern Med J. 2012;42(9):1066–7. doi:10.1111/j.1445-5994.2012.02891.x.

    CAS  PubMed  Google Scholar 

  2. Kobayashi S, Fujimoto S. Epidemiology of vasculitides: differences between Japan, Europe and North America. Clin Exp Nephrol. 2013;17(5):611–4. doi:10.1007/s10157-013-0813-9.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Watts RA, Gonzalez-Gay MA, Lane SE, Garcia-Porrua C, Bentham G, Scott DG. Geoepidemiology of systemic vasculitis: comparison of the incidence in two regions of Europe. Ann Rheum Dis. 2001;60(2):170–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Katz P, Alling DW, Haynes BF, Fauci AS. Association of Wegener's granulomatosis with HLA-B8. Clin Immunol Immunopathol. 1979;14(2):268–70.

    Article  CAS  PubMed  Google Scholar 

  5. Stassen PM, Cohen-Tervaert JW, Lems SP, Hepkema BG, Kallenberg CG, Stegeman CA. HLA-DR4, DR13(6) and the ancestral haplotype A1B8DR3 are associated with ANCA-associated vasculitis and Wegener's granulomatosis. Rheumatology (Oxford). 2009;48(6):622–5. doi:10.1093/rheumatology/kep057.

    Article  CAS  Google Scholar 

  6. Hagen EC, Stegeman CA, D'Amaro J, Schreuder GM, Lems SP, Tervaert JW, et al. Decreased frequency of HLA-DR13DR6 in Wegener's granulomatosis. Kidney Int. 1995;48(3):801–5.

    Article  CAS  PubMed  Google Scholar 

  7. Gencik M, Borgmann S, Zahn R, Albert E, Sitter T, Epplen JT, et al. Immunogenetic risk factors for anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis. Clin Exp Immunol. 1999;117(2):412–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jagiello P, Gencik M, Arning L, Wieczorek S, Kunstmann E, Csernok E, et al. New genomic region for Wegener's granulomatosis as revealed by an extended association screen with 202 apoptosis-related genes. Hum Genet. 2004;114(5):468–77. doi:10.1007/s00439-004-1092-z.

    Article  CAS  PubMed  Google Scholar 

  9. Heckmann M, Holle JU, Arning L, Knaup S, Hellmich B, Nothnagel M, et al. The Wegener's granulomatosis quantitative trait locus on chromosome 6p21.3 as characterised by tagSNP genotyping. Ann Rheum Dis. 2008;67(7):972–9. doi:10.1136/ard.2007.077693.

    Article  CAS  PubMed  Google Scholar 

  10. Arning L, Holle JU, Harper L, Millar DS, Gross WL, Epplen JT, et al. Are there specific genetic risk factors for the different forms of ANCA-associated vasculitis? Ann Rheum Dis. 2011;70(4):707–8. doi:10.1136/ard.2010.130971.

    Article  PubMed  Google Scholar 

  11. Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367(3):214–23. doi:10.1056/NEJMoa1108735. This article is the study with the biggest population, and found a greater association of genes with ANCA specificity than with clinical syndromes.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cao Y, Schmitz JL, Yang J, Hogan SL, Bunch D, Hu Y, et al. DRB1*15 allele is a risk factor for PR3-ANCA disease in African Americans. J Am Soc Nephrol. 2011;22(6):1161–7. doi:10.1681/ASN.2010101058.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Luo H, Chen M, Yang R, Xu PC, Zhao MH. The association of HLA-DRB1 alleles with antineutrophil cytoplasmic antibody-associated systemic vasculitis in Chinese patients. Hum Immunol. 2011;72(5):422–5. doi:10.1016/j.humimm.2011.02.017.

    Article  CAS  PubMed  Google Scholar 

  14. Papiha SS, Murty GE, Ad'Hia A, Mains BT, Venning M. Association of Wegener's granulomatosis with HLA antigens and other genetic markers. Ann Rheum Dis. 1992;51(2):246–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tsuchiya N. Genetics of ANCA-associated vasculitis in Japan: a role for HLA-DRB1*09:01 haplotype. Clin Exp Nephrol. 2013;17(5):628–30. doi:10.1007/s10157-012-0691-6.

    Article  CAS  PubMed  Google Scholar 

  16. Tsuchiya N, Kobayashi S, Kawasaki A, Kyogoku C, Arimura Y, Yoshida M, et al. Genetic background of Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis: association of HLA-DRB1*0901 with microscopic polyangiitis. J Rheumatol. 2003;30(7):1534–40.

    CAS  PubMed  Google Scholar 

  17. Chang DY, Luo H, Zhou XJ, Chen M, Zhao MH. Association of HLA genes with clinical outcomes of ANCA-associated vasculitis. Clin J Am Soc Nephrol. 2012;7(8):1293–9. doi:10.2215/CJN.13071211.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. de Lira FA, Conde RA, Bertolo MB, Costallat LT, Levy-Neto M, Fernandes SR. HLA-DR in Brazilian patients with polyarteritis nodosa (PAN) and microscopic polyangiitis (MPA). Dis Markers. 2009;26(3):105–9. doi:10.3233/DMA-2009-0616.

    Article  Google Scholar 

  19. Vaglio A, Martorana D, Maggiore U, Grasselli C, Zanetti A, Pesci A, et al. HLA-DRB4 as a genetic risk factor for Churg-Strauss syndrome. Arthritis Rheum. 2007;56(9):3159–66. doi:10.1002/art.22834.

    Article  CAS  PubMed  Google Scholar 

  20. Wieczorek S, Hellmich B, Gross WL, Epplen JT. Associations of Churg-Strauss syndrome with the HLA-DRB1 locus, and relationship to the genetics of antineutrophil cytoplasmic antibody-associated vasculitides: comment on the article by Vaglio et al. Arthritis Rheum. 2008;58(1):329–30. doi:10.1002/art.23209.

    Article  CAS  PubMed  Google Scholar 

  21. Kalsch AI, Peters A, Buhl B, Breedijk A, Prem K, Schmitt WH, et al. Retinoid X receptor beta polymorphisms do not explain functional differences in vitamins D and A response in Antineutrophil cytoplasmic antibody associated vasculitis patients. Autoimmunity. 2009;42(5):467–74.

    Article  PubMed  Google Scholar 

  22. Szyld P, Jagiello P, Csernok E, Gross WL, Epplen JT. On the Wegener granulomatosis associated region on chromosome 6p21.3. BMC Med Genet. 2006;7:21.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A. The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol Cell. 2006;24(5):701–11. doi:10.1016/j.molcel.2006.10.022.

    Article  CAS  PubMed  Google Scholar 

  24. Satijn DP, Gunster MJ, van der Vlag J, Hamer KM, Schul W, Alkema MJ, et al. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol. 1997;17(7):4105–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Pieters K, Pettersson A, Gullberg U, Hellmark T. The - 564 A/G polymorphism in the promoter region of the proteinase 3 gene associated with Wegener's granulomatosis does not increase the promoter activity. Clin Exp Immunol. 2004;138(2):266–70. doi:10.1111/j.1365-2249.2004.02608.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gencik M, Meller S, Borgmann S, Fricke H. Proteinase 3 gene polymorphisms and Wegener's granulomatosis. Kidney Int. 2000;58(6):2473–7. doi:10.1046/j.1523-1755.2000.00430.x.

    Article  CAS  PubMed  Google Scholar 

  27. Abdgawad M, Hellmark T, Gunnarsson L, Westman KW, Segelmark M. Increased neutrophil membrane expression and plasma level of proteinase 3 in systemic vasculitis are not a consequence of the - 564 A/G promotor polymorphism. Clin Exp Immunol. 2006;145(1):63–70. doi:10.1111/j.1365-2249.2006.03119.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Piedrafita FJ, Molander RB, Vansant G, Orlova EA, Pfahl M, Reynolds WF. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem. 1996;271(24):14412–20.

    Article  CAS  PubMed  Google Scholar 

  29. Reynolds WF, Hiltunen M, Pirskanen M, Mannermaa A, Helisalmi S, Lehtovirta M, et al. MPO and APOEepsilon4 polymorphisms interact to increase risk for AD in Finnish males. Neurology. 2000;55(9):1284–90.

    Article  CAS  PubMed  Google Scholar 

  30. Reynolds WF, Stegeman CA, Tervaert JW. 463 G/A myeloperoxidase promoter polymorphism is associated with clinical manifestations and the course of disease in MPO-ANCA-associated vasculitis. Clin Immunol. 2002;103(2):154–60. doi:10.1006/clim.2002.5206.

    Article  CAS  PubMed  Google Scholar 

  31. Fiebeler A, Borgmann S, Woywodt A, Haller H, Haubitz M. No association of G-463A myeloperoxidase gene polymorphism with MPO-ANCA-associated vasculitis. Nephrol Dial Transplant. 2004;19(4):969–71. doi:10.1093/ndt/gfh025.

    Article  CAS  PubMed  Google Scholar 

  32. Rajp A, Adu D, Savage CO. Meta-analysis of myeloperoxidase G-463/A polymorphism in anti-neutrophil cytoplasmic autoantibody-positive vasculitis. Clin Exp Immunol. 2007;149(2):251–6. doi:10.1111/j.1365-2249.2007.03418.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Esnault VL, Audrain MA, Sesboue R. Alpha-1-antitrypsin phenotyping in ANCA-associated diseases: one of several arguments for protease/antiprotease imbalance in systemic vasculitis. Exp Clin Immunogenet. 1997;14(3):206–13.

    CAS  PubMed  Google Scholar 

  34. Bals R. Alpha-1-antitrypsin deficiency. Best Pract Res Clin Gastroenterol. 2010;24(5):629–33. doi:10.1016/j.bpg.2010.08.006.

    Article  CAS  PubMed  Google Scholar 

  35. Callea F, Gregorini G, Sinico A, Consalez GG, Bossolasco M, Salvidio G, et al. alpha 1-Antitrypsin (AAT) deficiency and ANCA-positive systemic vasculitis: genetic and clinical implications. Eur J Clin Invest. 1997;27(8):696–702.

    Article  CAS  PubMed  Google Scholar 

  36. Esnault VL, Testa A, Audrain M, Roge C, Hamidou M, Barrier JH, et al. Alpha 1-antitrypsin genetic polymorphism in ANCA-positive systemic vasculitis. Kidney Int. 1993;43(6):1329–32.

    Article  CAS  PubMed  Google Scholar 

  37. Savige JA, Chang L, Cook L, Burdon J, Daskalakis M, Doery J. Alpha 1-antitrypsin deficiency and anti-proteinase 3 antibodies in anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis. Clin Exp Immunol. 1995;100(2):194–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Elzouki AN, Segelmark M, Wieslander J, Eriksson S. Strong link between the alpha 1-antitrypsin PiZ allele and Wegener's granulomatosis. J Intern Med. 1994;236(5):543–8.

    Article  CAS  PubMed  Google Scholar 

  39. Morris H, Morgan MD, Wood AM, Smith SW, Ekeowa UI, Herrmann K, et al. ANCA-associated vasculitis is linked to carriage of the Z allele of alpha(1) antitrypsin and its polymers. Ann Rheum Dis. 2011;70(10):1851–6. doi:10.1136/ard.2011.153569.

    Article  CAS  PubMed  Google Scholar 

  40. Segelmark M, Elzouki AN, Wieslander J, Eriksson S. The PiZ gene of alpha 1-antitrypsin as a determinant of outcome in PR3-ANCA-positive vasculitis. Kidney Int. 1995;48(3):844–50.

    Article  CAS  PubMed  Google Scholar 

  41. Mahr AD, Edberg JC, Stone JH, Hoffman GS, St Clair EW, Specks U, et al. Alpha(1)-antitrypsin deficiency-related alleles Z and S and the risk of Wegener's granulomatosis. Arthritis Rheum. 2010;62(12):3760–7. doi:10.1002/art.27742.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Griffith ME, Lovegrove JU, Gaskin G, Whitehouse DB, Pusey CD. C-antineutrophil cytoplasmic antibody positivity in vasculitis patients is associated with the Z allele of alpha-1-antitrypsin, and P-antineutrophil cytoplasmic antibody positivity with the S allele. Nephrol Dial Transplant. 1996;11(3):438–43.

    Article  CAS  PubMed  Google Scholar 

  43. Lee SS, Lawton JW, Ko KH. Alpha1 antitrypsin phenotypic variability is not associated with ANCA in southern Chinese. Ann Rheum Dis. 2001;60(7):725–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Borgmann S, Haubitz M, Schwab SG. Lack of association of alpha-1 antichymotrypsin gene polymorphism with PR3-ANCA and MPO-ANCA associated vasculitis. Autoimmunity. 2002;35(7):435–9.

    Article  CAS  PubMed  Google Scholar 

  45. Lee YH, Choi SJ, Ji JD, Song GG. CTLA-4 and TNF-alpha promoter-308 A/G polymorphisms and ANCA-associated vasculitis susceptibility: a meta-analysis. Mol Biol Rep. 2012;39(1):319–26. doi:10.1007/s11033-011-0741-2. This meta-analysis includes previous studies of CTLA-4 and TNF-alpha polymorphism and ANCA-associated vasculitis susceptibility, including mainly Caucasian patients.

    Article  CAS  PubMed  Google Scholar 

  46. Giscombe R, Wang X, Huang D, Lefvert AK. Coding sequence 1 and promoter single nucleotide polymorphisms in the CTLA-4 gene in Wegener's granulomatosis. J Rheumatol. 2002;29(5):950–3.

    CAS  PubMed  Google Scholar 

  47. Slot MC, Sokolowska MG, Savelkouls KG, Janssen RG, Damoiseaux JG, Tervaert JW. Immunoregulatory gene polymorphisms are associated with ANCA-related vasculitis. Clin Immunol. 2008;128(1):39–45. doi:10.1016/j.clim.2008.03.506.

    Article  CAS  PubMed  Google Scholar 

  48. Spriewald BM, Witzke O, Wassmuth R, Wenzel RR, Arnold ML, Philipp T, et al. Distinct tumour necrosis factor alpha, interferon gamma, interleukin 10, and cytotoxic T cell antigen 4 gene polymorphisms in disease occurrence and end stage renal disease in Wegener's granulomatosis. Ann Rheum Dis. 2005;64(3):457–61. doi:10.1136/ard.2004.025809.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Carr EJ, Niederer HA, Williams J, Harper L, Watts RA, Lyons PA, et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med Genet. 2009. doi:10.1186/1471-2350-10-121.

    Google Scholar 

  50. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42. doi:10.1111/j.1600-065X.2010.00923.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity. 1996;4(6):573–81.

    Article  CAS  PubMed  Google Scholar 

  52. Wieczorek S, Hoffjan S, Chan A, Rey L, Harper L, Fricke H, et al. Novel association of the CD226 (DNAM-1) Gly307Ser polymorphism in Wegener's granulomatosis and confirmation for multiple sclerosis in German patients. Genes Immun. 2009;10(6):591–5. doi:10.1038/gene.2009.44.

    Article  CAS  PubMed  Google Scholar 

  53. Fousteri G, Liossis SN, Battaglia M. Roles of the protein tyrosine phosphatase PTPN22 in immunity and autoimmunity. Clin Immunol. 2013;149(3):556–65. doi:10.1016/j.clim.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  54. Lee YH, Choi SJ, Ji JD, Song GG. The protein tyrosine phosphatase nonreceptor 22 C1858T polymorphism and vasculitis: a meta-analysis. Mol Biol Rep. 2012;39(8):8505–11. doi:10.1007/s11033-012-1705-x.

    Article  CAS  PubMed  Google Scholar 

  55. Martorana D, Maritati F, Malerba G, Bonatti F, Alberici F, Oliva E, et al. PTPN22 R620W polymorphism in the ANCA-associated vasculitides. Rheumatology (Oxford). 2012;51(5):805–12. doi:10.1093/rheumatology/ker446. This meta-analysis includes previous studies of PTPN22 polymorphism and ANCA-associated vasculitis susceptibility, including mainly Caucasian patients.

    Article  CAS  Google Scholar 

  56. Jagiello P, Aries P, Arning L, Wagenleiter SE, Csernok E, Hellmich B, et al. The PTPN22 620W allele is a risk factor for Wegener's granulomatosis. Arthritis Rheum. 2005;52(12):4039–43. doi:10.1002/art.21487.

    Article  CAS  PubMed  Google Scholar 

  57. Jennette JC, Falk RJ, Hu P, Xiao H. Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Annu Rev Pathol. 2013;8:139–60. doi:10.1146/annurev-pathol-011811-132453.

    Article  CAS  PubMed  Google Scholar 

  58. Borgmann S, Endisch G, Hacker UT, Song BS, Fricke H. Proinflammatory genotype of interleukin-1 and interleukin-1 receptor antagonist is associated with ESRD in proteinase 3-ANCA vasculitis patients. Am J Kidney Dis. 2003;41(5):933–42.

    Article  CAS  PubMed  Google Scholar 

  59. Suarez A, Castro P, Alonso R, Mozo L, Gutierrez C. Interindividual variations in constitutive interleukin-10 messenger RNA and protein levels and their association with genetic polymorphisms. Transplantation. 2003;75(5):711–7. doi:10.1097/01.TP.0000055216.19866.9A.

    Article  CAS  PubMed  Google Scholar 

  60. Bartfai Z, Gaede KI, Russell KA, Murakozy G, Muller-Quernheim J, Specks U. Different gender-associated genotype risks of Wegener's granulomatosis and microscopic polyangiitis. Clin Immunol. 2003;109(3):330–7.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou Y, Giscombe R, Huang D, Lefvert AK. Novel genetic association of Wegener's granulomatosis with the interleukin 10 gene. J Rheumatol. 2002;29(2):317–20.

    CAS  PubMed  Google Scholar 

  62. Wieczorek S, Hellmich B, Arning L, Moosig F, Lamprecht P, Gross WL, et al. Functionally relevant variations of the interleukin-10 gene associated with antineutrophil cytoplasmic antibody-negative Churg-Strauss syndrome, but not with Wegener's granulomatosis. Arthritis Rheum. 2008;58(6):1839–48. doi:10.1002/art.23496.

    Article  CAS  PubMed  Google Scholar 

  63. Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV. A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol. 2000;61(9):863–6.

    Article  CAS  PubMed  Google Scholar 

  64. Goldstein JD, Perol L, Zaragoza B, Baeyens A, Marodon G, Piaggio E. Role of cytokines in thymus- versus peripherally derived-regulatory T cell differentiation and function. Front Immunol. 2013;4:155. doi:10.3389/fimmu.2013.00155.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12(3):180–90. doi:10.1038/nri3156.

    CAS  PubMed  Google Scholar 

  66. Carr EJ, Clatworthy MR, Lowe CE, Todd JA, Wong A, Vyse TJ, et al. Contrasting genetic association of IL2RA with SLE and ANCA-associated vasculitis. BMC Med Genet. 2009;10:22. doi:10.1186/1471-2350-10-22.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest. 2004;114(1):57–66. doi:10.1172/JCI21134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wieczorek S, Holle JU, Bremer JP, Wibisono D, Moosig F, Fricke H, et al. Contrasting association of a non-synonymous leptin receptor gene polymorphism with Wegener's granulomatosis and Churg-Strauss syndrome. Rheumatology (Oxford). 2010;49(5):907–14. doi:10.1093/rheumatology/kep420.

    Article  CAS  Google Scholar 

  69. Delgado-Vega AM, Alarcon-Riquelme ME, Kozyrev SV. Genetic associations in type I interferon related pathways with autoimmunity. Arthritis Res Ther. 2010;12 Suppl 1:S2.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Wieczorek S, Holle JU, Muller S, Fricke H, Gross WL, Epplen JT. A functionally relevant IRF5 haplotype is associated with reduced risk to Wegener's granulomatosis. J Mol Med (Berl). 2010;88(4):413–21. doi:10.1007/s00109-009-0580-y.

    Article  Google Scholar 

  71. Tse WY, Abadeh S, McTiernan A, Jefferis R, Savage CO, Adu D. No association between neutrophil FcgammaRIIa allelic polymorphism and anti-neutrophil cytoplasmic antibody (ANCA)-positive systemic vasculitis. Clin Exp Immunol. 1999;117(1):198–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Edberg JC, Wainstein E, Wu J, Csernok E, Sneller MC, Hoffman GS, et al. Analysis of FcgammaRII gene polymorphisms in Wegener's granulomatosis. Exp Clin Immunogenet. 1997;14(3):183–95.

    CAS  PubMed  Google Scholar 

  73. Dijstelbloem HM, Scheepers RH, Oost WW, Stegeman CA, van der Pol WL, Sluiter WJ, et al. Fcgamma receptor polymorphisms in Wegener's granulomatosis: risk factors for disease relapse. Arthritis Rheum. 1999;42(9):1823–7. doi:10.1002/1529-0131(199909)42:9<1823::AID-ANR5>3.0.CO;2-X.

    Article  CAS  PubMed  Google Scholar 

  74. Ramsland PA, Farrugia W, Bradford TM, Sardjono CT, Esparon S, Trist HM, et al. Structural basis for Fc gammaRIIa recognition of human IgG and formation of inflammatory signaling complexes. J Immunol. 2011;187(6):3208–17. doi:10.4049/jimmunol.1101467.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997;100(5):1059–70. doi:10.1172/JCI119616.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Bredius RG, de Vries CE, Troelstra A, van Alphen L, Weening RS, van de Winkel JG, et al. Phagocytosis of Staphylococcus aureus and Haemophilus influenzae type B opsonized with polyclonal human IgG1 and IgG2 antibodies. Functional hFc gamma RIIa polymorphism to IgG2. J Immunol. 1993;151(3):1463–72.

    CAS  PubMed  Google Scholar 

  77. Salmon JE, Edberg JC, Kimberly RP. Fc gamma receptor III on human neutrophils. Allelic variants have functionally distinct capacities. J Clin Invest. 1990;85(4):1287–95. doi:10.1172/JCI114566.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Tse WY, Abadeh S, Jefferis R, Savage CO, Adu D. Neutrophil FcgammaRIIIb allelic polymorphism in anti-neutrophil cytoplasmic antibody (ANCA)-positive systemic vasculitis. Clin Exp Immunol. 2000;119(3):574–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Kelley JM, Monach PA, Ji C, Zhou Y, Wu J, Tanaka S, et al. IgA and IgG antineutrophil cytoplasmic antibody engagement of Fc receptor genetic variants influences granulomatosis with polyangiitis. Proc Natl Acad Sci U S A. 2011;108(51):20736–41. doi:10.1073/pnas.1109227109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Wu J, Ji C, Xie F, Langefeld CD, Qian K, Gibson AW, et al. FcalphaRI (CD89) alleles determine the proinflammatory potential of serum IgA. J Immunol. 2007;178(6):3973–82.

    Article  CAS  PubMed  Google Scholar 

  81. Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffie C, et al. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity. 2005;22(1):31–42. doi:10.1016/j.immuni.2004.11.017.

    Article  CAS  PubMed  Google Scholar 

  82. Tan SM. The leucocyte beta2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosci Rep. 2012;32(3):241–69. doi:10.1042/BSR20110101.

    Article  CAS  PubMed  Google Scholar 

  83. Gencik M, Meller S, Borgmann S, Sitter T, Menezes Saecker AM, Fricke H, et al. The association of CD18 alleles with anti-myeloperoxidase subtypes of ANCA-associated systemic vasculitides. Clin Immunol. 2000;94(1):9–12. doi:10.1006/clim.1999.4811.

    Article  CAS  PubMed  Google Scholar 

  84. Meller S, Jagiello P, Borgmann S, Fricke H, Epplen JT, Gencik M. Novel SNPs in the CD18 gene validate the association with MPO-ANCA+ vasculitis. Genes Immun. 2001;2(5):269–72. doi:10.1038/sj.gene.6363781.

    Article  CAS  PubMed  Google Scholar 

  85. Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology. 2011;132(3):315–25. doi:10.1111/j.1365-2567.2010.03398.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Miyashita R, Tsuchiya N, Yabe T, Kobayashi S, Hashimoto H, Ozaki S, et al. Association of killer cell immunoglobulin-like receptor genotypes with microscopic polyangiitis. Arthritis Rheum. 2006;54(3):992–7. doi:10.1002/art.21653.

    Article  CAS  PubMed  Google Scholar 

  87. Anderson KJ, Allen RL. Regulation of T-cell immunity by leucocyte immunoglobulin-like receptors: innate immune receptors for self on antigen-presenting cells. Immunology. 2009;127(1):8–17. doi:10.1111/j.1365-2567.2009.03097.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Mamegano K, Kuroki K, Miyashita R, Kusaoi M, Kobayashi S, Matsuta K, et al. Association of LILRA2 (ILT1, LIR7) splice site polymorphism with systemic lupus erythematosus and microscopic polyangiitis. Genes Immun. 2008;9(3):214–23. doi:10.1038/gene.2008.5.

    Article  CAS  PubMed  Google Scholar 

  89. Persson U, Gullstrand B, Pettersson A, Sturfelt G, Truedsson L, Segelmark M. A candidate gene approach to ANCA-associated vasculitis reveals links to the C3 and CTLA-4 genes but not to the IL1-Ra and Fcgamma-RIIa genes. Kidney Blood Press Res. 2013;37(6):641–8. doi:10.1159/000355744.

    Article  CAS  PubMed  Google Scholar 

  90. Persson U, Truedsson L, Westman KW, Segelmark M. C3 and C4 allotypes in anti-neutrophil cytoplasmic autoantibody (ANCA)-positive vasculitis. Clin Exp Immunol. 1999;116(2):379–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005;6(6):551–7. doi:10.1038/ni1206.

    Article  CAS  PubMed  Google Scholar 

  92. Vordenbaumen S, Timm D, Bleck E, Richter J, Fischer-Betz R, Chehab G, et al. Altered serum levels of human neutrophil peptides (HNP) and human beta-defensin 2 (hBD2) in Wegener's granulomatosis. Rheumatol Int. 2011;31(9):1251–4. doi:10.1007/s00296-010-1702-0.

    Article  PubMed  Google Scholar 

  93. Groth M, Wiegand C, Szafranski K, Huse K, Kramer M, Rosenstiel P, et al. Both copy number and sequence variations affect expression of human DEFB4. Genes Immun. 2010;11(6):458–66. doi:10.1038/gene.2010.19.

    Article  CAS  PubMed  Google Scholar 

  94. Zhou XJ, Cheng FJ, Lv JC, Luo H, Yu F, Chen M, et al. Higher DEFB4 genomic copy number in SLE and ANCA-associated small vasculitis. Rheumatology (Oxford). 2012;51(6):992–5. doi:10.1093/rheumatology/ker419.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors want to acknowledge Dr Graciela S. Alarcón from Department of Medicine, Division of Clinical Immunology and Rheumatology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA for her critical review of this paper.

Compliance With Ethics Guidelines

Conflict of Interest

Manuel F. Ugarte-Gil and Luis R. Espinoza declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Ugarte-Gil.

Additional information

This article is part of the Topical Collection on Vasculitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugarte-Gil, M.F., Espinoza, L.R. Genetics of ANCA-associated Vasculitides. Curr Rheumatol Rep 16, 428 (2014). https://doi.org/10.1007/s11926-014-0428-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-014-0428-5

Keywords

Navigation