Skip to main content
Log in

Viscoelastic Properties of Tomato Juice: Applicability of the Cox–Merz Rule

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Tomato is one of the most important vegetables for the food industry. Rheological characterization of food is important for products, equipments, and unit operations design and evaluation. It is necessary for process optimization and high-quality products assurance. However, the works in literature present variable data, and some rheological characterization, as viscoelastic properties, are still scarce. The present work has evaluated the viscoelastic properties of tomato juice, as well as the applicability of the Cox–Merz rule. Tomato juice has shown dominant elastic properties rather than the viscous ones and could be classified as a weak gel (storage modulus higher then loss modulus). Moreover, due to the low pulp content, it has shown low viscoelastic behavior, with small dependency of oscillatory of the storage modulus. The rheological oscillatory and steady-state shear rheological properties of tomato juice were then correlated by two linear modifications on the Cox–Merz rule. The obtained values are in agreement with those described in the literature for other food products. The obtained data are potentially useful for future studies on food properties and process design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ahmed, J., & Ramaswamy, H. S. (2006). Viscoelastic and thermal characteristics of vegetable puree-based baby foods. Journal of Food Process Engineering, 29, 219–233.

    Article  Google Scholar 

  • Alvarez, M. D., Fernández, C., & Canet, W. (2004). Rheological behaviour of fresh and frozen potato puree in steady and dynamic shear at different temperatures. European Food Research Technology, 218, 544–553.

    Article  CAS  Google Scholar 

  • Alvarez, M. D., Fernández, C., & Canet, W. (2011). Effect of cryoprotectant mixtures on rheological properties of fresh and frozen/thawed mashed potatoes. Journal of Food Process Engineering, 34, 224–250.

    Article  CAS  Google Scholar 

  • Augusto, P. E. D., Falguera, V., Cristianini, M., & Ibarz, A. (2010). Rheological behavior of tomato juice: steady-state shear and time-dependent modeling. Food and Bioprocess Technology. doi:10.1007/s11947-010-0472-8.

  • Augusto, P. E. D., Falguera, V., Cristianini, M., & Ibarz, A. (2011). Influence of fibre addition on the rheological properties of peach juice. International Journal of Food Science and Technology, 46, 1086–1092.

    Article  Google Scholar 

  • Bayod, E., Månsson, P., Innings, F., Bergenståhl, B., & Tornberg, E. (2007). Low shear rheology of concentrated tomato products. Effect of particle size and time. Food Biophysics, 2, 146–157.

    Article  Google Scholar 

  • Bayod, E., Willers, E. P., & Tornberg, E. (2008). Rheological and structural characterization of tomato paste and its influence on the quality of ketchup. LWT—Food Science and Technology, 41, 1289–1300.

    CAS  Google Scholar 

  • Canet, W., Alvarez, M. D., Fernández, C., & Luna, P. (2005). Comparisons of methods for measuring yield stresses in potato puree: effect of temperature and freezing. Journal of Food Engineering, 68, 143–153.

    Article  Google Scholar 

  • Da Silva, J. A. L., & Rao, M. A. (1992). Viscoelastic properties of food hydrocolloid dispersions. In M. A. Rao & J. F. Steffe (Eds.), Viscoelastic properties of foods. London: Elsevier.

    Google Scholar 

  • Dogan, H., & Kokini, J. L. (2007). Rheological properties of foods. In D. R. Heldman & D. B. Lund (Eds.), Handbook of food engineering (2nd ed.). Boca Raton: Taylor & Francis Group.

    Google Scholar 

  • Gunasekaran, S., & Ak, M. M. (2000). Dynamic oscillatory shear testing of foods—selected applications. Trends in Food Science and Technology, 11, 115–127.

    Article  CAS  Google Scholar 

  • Ibarz, A., & Barbosa-Cánovas, G. V. (2003). Unit operations in food engineering. Boca Raton: CRC.

    Google Scholar 

  • Kin, C., & Yoo, B. (2006). Rheological properties of rice starch–xanthan gum mixtures. Journal of Food Engineering, 72, 120–128.

    Google Scholar 

  • Massa, A., González, C., Maestro, A., Labanda, J., & Ibarz, A. (2010). Rheological characterization of peach purees. Journal of Texture Studies, 41, 532–548.

    Article  Google Scholar 

  • Nisha, P., Singhal, R. S., & Pandit, A. B. (2010). Kinetic modelling of colour degradation in tomato puree (Lycopersicon esculentum L.). Food and Bioprocess Technology. doi:10.1007/s11947-009-0300-1.

  • Pereira, E. A., Brandão, E. M., Borges, S. V., & Maia, M. C. A. (2008). Influence of concentration on the steady and oscillatory shear behavior of umbu pulp. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(1), 87–90.

    Article  Google Scholar 

  • Ramamoorthi, L., Lee, Y., & Brewer, S. (2009). Effect of food matrix and heat treatment on the rheological properties of salmon-based baby food. Journal of Food Engineering, 95, 432–437.

    Article  Google Scholar 

  • Rao, M. A. (2005). Rheological properties of fluid foods. In M. A. Rao, S. S. H. Rizvi, & A. K. Datta (Eds.), Engineering properties of foods (3rd ed.). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Rao, M. A. (1999). Flow and functional models for rheological properties of fluid foods. In M. A. Rao (Ed.), Rheology of fluid and semisolid foods: principles and applications. Gaithersburg: Aspen.

    Google Scholar 

  • Rao, M. A., & Cooley, H. J. (1992). Rheological behavior of tomato pastes in steady and dynamic shear. Journal of Texture Studies, 23, 415–425.

    Article  Google Scholar 

  • Sánchez, M. C., Valencia, C., Gallegos, C., Ciruelos, A., & Latorre, A. (2002). Influence of processing on the rheological properties of tomato paste. Journal of the Science of Food and Agriculture, 82, 990–997.

    Article  Google Scholar 

  • Sato, A. C. K., & Cunha, R. L. (2009). Effect of particle size on rheological properties of jaboticaba pulp. Journal of Food Engineering, 91, 566–570.

    Article  CAS  Google Scholar 

  • Steffe, J. F. (1996). Rheological methods in food process engineering (2nd ed.). East Lansing: Freeman.

    Google Scholar 

  • Tonon, R. V., Alexandre, D., Hubinger, M. D., & Cunha, R. L. (2009). Steady and dynamic shear rheological properties of açai pulp (Euterpe oleraceae Mart.). Journal of Food Engineering, 92, 425–431.

    Article  CAS  Google Scholar 

  • Valencia, C., Sánchez, M. C., Ciruelos, A., Latorre, A., Franco, J. M., & Gallegos, C. (2002). Linear viscoelasticity of tomato sauce products: influence of previous tomato paste processing. European Food Research Technology, 214, 394–399.

    Article  CAS  Google Scholar 

  • Valencia, C., Sánchez, M. C., Ciruelos, A., & Gallegos, C. (2004). Influence of tomato paste processing on the linear viscoelasticity of tomato ketchup. Food Science and Technology International, 10(2), 95–100.

    Article  Google Scholar 

  • Yoo, B., & Rao, M. A. (1996). Creep and dynamic rheological behavior of tomato concentrates: effect of concentration and finisher screen size. Journal of Texture Studies, 27, 451–459.

    Article  Google Scholar 

Download references

Acknowledgments

Author PED Augusto kindly thanks Fundación Carolina for the received fellowship in the program “Movilidad de Profesores e Investigadores Brasil-España.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Esteves Duarte Augusto.

Additional information

Part of this work was presented at the ICEF11.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augusto, P.E.D., Falguera, V., Cristianini, M. et al. Viscoelastic Properties of Tomato Juice: Applicability of the Cox–Merz Rule. Food Bioprocess Technol 6, 839–843 (2013). https://doi.org/10.1007/s11947-011-0655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0655-y

Keywords

Navigation