Skip to main content
Log in

Differences Between the Order Model and the Weibull Model in the Modeling of the Enzymatic Browning

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study was focused on a comparison between the first order model and the Weibull model regarding their suitability to fit the enzymatic browning kinetic data in samples of mushrooms, pears, apples, avocados, and bananas (based on the use of the L* luminosity, the ΔE*, and the BI as the browning indexes). In order to obtain statistically robust results, at least 900 points by curve kinetic were used to describe the enzymatic browning. A mean square error was used to measure the suitability of each model. In this study, 60 slices from each sample were analyzed in a computer vision system to calculate L* values. In the results, it was demonstrated that the Weibull model appears to be the best model for mushrooms, pears, apples, avocados, and bananas. According to that expected for a First order kinetic, the β values should be equal to one in the Weibull model. In this study, the β values observed were always less than one. Therefore, it is not possible to assert that the enzymatic browning always follows an empirical First order kinetic. According to the results of this investigation, it is recommended to use the Weibull model first to insure that enzymatic browning kinetic is of the first order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Amiot, M., Tacchini M., Aubert, S., Oleszek, W. (1995) Influence of cultivar, maturity stage, and storage conditions on phenolic composition and enzymatic browning of pear fruits. Journal of Agricultural and Food Chemistry, 43, 1132–1137.

  • Benlloch-Tinoco, M., Kaulmann, A., Corte-Real, J., Rodrigo, D., Martínez-Navarrete, N., & Bohn, T. (2015). Chlorophylls and carotenoids of kiwifruit puree are affected similarly or less by microwave than by conventional heat processing and storage. Food Chemistry, 187, 254–262.

    Article  CAS  Google Scholar 

  • Corradini, M. G., & Peleg, M. (2004). A model of non-isothermal degradation of nutrients, pigments and enzymes. Journal of the Science of Food and Agriculture, 84(3), 217–226.

    Article  CAS  Google Scholar 

  • Corradini, M. G., & Peleg, M. (2006a). Prediction of vitamins loss during non-isothermal heat processes and storage with non-linear kinetic models. Trends in Food Science & Technology, 17(1), 24–34.

    Article  CAS  Google Scholar 

  • Corradini, M. G., & Peleg, M. (2006b). Shelf-life estimation from accelerated storage data. Trends in Food Science & Technology, 18(1), 37–47.

    Article  Google Scholar 

  • Chen, L., & Opara, U. L. (2013). Approaches to analysis and modeling texture in fresh and processed foods—a review. Journal of Food Engineering, 119(3), 497–507.

    Article  Google Scholar 

  • Chutintrasria, B., & Noomhormb, A. (2006). Thermal inactivation of polyphenoloxidase in pineapple puree. LWT - Food Science and Technology, 39, 492–495.

    Article  Google Scholar 

  • Degl’Innocenti, E., Pardossi, A., Tognoni, F., & Guidi, L. (2007). Physiological basis of sensitivity to enzymatic browning in ‘lettuce’, ‘escarole’ and ‘rocket salad’ when stored as fresh-cut products. Food Chemistry, 104(1), 209–215.

    Article  Google Scholar 

  • Dermesonluoglu, E., Katsaros, G., Tsevdou, M., Giannakourou, M., & Taoukis, P. (2015). Kinetic study of quality indices and shelf life modelling of frozen spinach under dynamic conditions of the cold chain. Journal of Food Engineering, 148, 13–23.

    Article  Google Scholar 

  • Derossi, A., De Pilli, T., & Fiore, A. G. (2010). Vitamin C kinetic degradation of strawberry juice stored under non-isothermal conditions. LWT - Food Science and Technology, 43(4), 590–595.

    Article  CAS  Google Scholar 

  • Kim, D.-H., Kim, H.-B., Chung, H.-S., & Moon, K.-D. (2014). Browning control of fresh-cut lettuce by phytoncide treatment. Food Chemistry, 159, 188–192.

    Article  CAS  Google Scholar 

  • Landl, A., Abadias, M., Sárraga, C., Viñas, I., & Picouet, P. A. (2010). Effect of high pressure processing on the quality of acidified granny smith apple purée product. Innovative Food Science & Emerging Technologies, 11(4), 557–564.

    Article  CAS  Google Scholar 

  • Lante, A., Tinello, F., & Nicoletto, M. (2016). UV—A light treatment for controlling enzymatic browning of fresh-cut fruits. Innovative Food Science & Emerging Technologies, 34, 141–147.

    Article  CAS  Google Scholar 

  • Leon, K., Mery, D., Pedreschi, F., & Leon, J. (2006). Color measurement in L*a*b* units from RGB digital images. Food Research International, 39, 1084–1091.

    Article  Google Scholar 

  • Lozano, J. E., Drudisbiscarri, R., & Ibarzribas, A. (1994). Enzymatic browning in apple pulps. Journal of Food Science, 59(3), 564–567.

    Article  CAS  Google Scholar 

  • Lu, S. M., Luo, Y. G., Turner, E., & Feng, H. (2007). Efficacy of sodium chlorite as an inhibitor of enzymatic browning in apple slices. Food Chemistry, 104(2), 824–829.

    Article  CAS  Google Scholar 

  • Lunadei, L., Galleguillos, P., Diezma, B., Llea, L., & Ruiz-Garcia, L. (2011). A multispectral vision system to evaluate enzymatic browning in fresh-cut apple slices. Postharvest Biology and Technology, 60(3), 225–234.

    Article  CAS  Google Scholar 

  • Luo, Y., & Barbosa, G. (1994). Inhibition of browning of fresh apple slices by 4-Hexylresorcinol. Abstracts of Papers of the American Chemical Society, 208, 126-AGFD.

  • Luo, Y., & Barbosa, G. (1997). Enzymatic browning and its inhibition in new apple cultivars slices using 4-hexylresorcinol in combination with ascorbic acid. Food Science and Technology International, 3(3), 195–201.

    Article  CAS  Google Scholar 

  • Maingonnat, J. F., Missang, C. E., Baron, A., & Renard, C. M. G. C. (2014). Two micro-mechanical techniques for studying the enzymatic maceration kinetics of apple parenchyma. Journal of Food Engineering, 122(1), 1–7.

    Article  CAS  Google Scholar 

  • Malheiros, P. D. S., Sant, V., Brandelli, A., & Franco, B. D. G. D. M. (2015). Kinetic modeling of thermal inactivation of antimicrobial peptides produced by Lactobacillus sakei subsp. sakei 2a. Thermochimica Acta, 605, 95–99.

    Article  CAS  Google Scholar 

  • McEvily, A. J., Iyengar, R., & Otwell, W. S. (1992). Inhibition of enzymatic browning in foods and beverages. Critical Reviews in Food Science and Nutrition, 32(3), 253–273.

    Article  CAS  Google Scholar 

  • Nicolas, J. J., Richardforget, F. C., Goupy, P. M., Amiot, M. J., & Aubert, S. Y. (1994). Enzymatic browning reactions in apple and apple products. Critical Reviews in Food Science and Nutrition, 34(2), 109–157.

    Article  CAS  Google Scholar 

  • Noshad, M., Mohebbi, M., Ansarifar, E., & Behbahani, B. A. (2015). Quantification of enzymatic browning kinetics of quince preserved by edible coating using the fractal texture Fourier image. Journal of Food Measurement and Characterization, 9(3), 375–381.

  • Quevedo, R., Díaz, O., Ronceros, B., Pedreschi, F., & Aguilera, J. M. (2009). Description of the kinetic enzymatic browning in banana (Musa cavendish) slices using non-uniform color information from digital images. Food Research International, 42(9), 1309–1314.

    Article  CAS  Google Scholar 

  • Quevedo, R., Pedreschi, F., Bastias, J. M., & Diaz, O. (2016). Correlation of the fractal enzymatic browning rate with the temperature in mushroom, pear and apple slices. LWT- Food Science and Technology, 65, 406–413.

    Article  CAS  Google Scholar 

  • Quevedo, R., Ronceros, B., Garcia, K., Lopéz, P., & Pedreschi, F. (2011). Enzymatic browning in sliced and puréed avocado: a fractal kinetic study. Journal of Food Engineering, 105(2), 210–215.

    Article  CAS  Google Scholar 

  • Quevedo, R., Valencia, E., Cuevas, G., Ronceros, B., Pedreschi, F., & Bastias, J. M. (2013). Color changes in the surface of fresh cut meat: a fractal kinetic application. Food Research International, 54(2), 1430–1436.

    Article  CAS  Google Scholar 

  • Quevedo, R., Valencia, E., López, P., Gunckel, E., Pedreschi, F., & Bastías, J. (2014). Characterizing the variability of enzymatic browning in fresh-cut apple slices. Food and Bioprocess Technology, 7(5), 1526–1532.

    Article  CAS  Google Scholar 

  • Saavedra, J., Córdova, A., Gálvez, L., Quezada, C., & Navarro, R. (2013). Principal component analysis as an exploration tool for kinetic modeling of food quality: a case study of a dried apple cluster snack. Journal of Food Engineering, 119(2), 229–235.

    Article  Google Scholar 

  • Sampedro, F., & Fan, X. (2014). Inactivation kinetics and photoreactivation of vegetable oxidative enzymes after combined UV-C and thermal processing. Innovative Food Science & Emerging Technologies, 23, 107–113.

    Article  CAS  Google Scholar 

  • Sapers, G. M., & Douglas, F. W. (1987). Measurement of enzymatic browning at cut surfaces and in juice of raw apple and pear fruits. Journal of Food Science, 52(5), 1258–1285.

    Article  CAS  Google Scholar 

  • Soliva-Fortuny, R., Elez-Martinez, P., Sebastian-Caldero, M., & Martin-Belloso, O. (2002). Kinetics of polyphenol oxidase activity inhibition and browning of avocado puree preserved by combined methods. Journal of Food Engineering, 55(2), 131–137.

    Article  Google Scholar 

  • Soliva, R., Elez, P., Sebastián, M., & Martíın, O. (2001). Evaluation of browning effect on avocado puree preserved by combined methods. Innovative Food Science & Emerging Technologies, 1, 261–268.

    Article  Google Scholar 

  • Valdramidis, V. P., Cullen, P. J., Tiwari, B. K., & O’Donnell, C. P. (2010). Quantitative modelling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. Journal of Food Engineering, 96(3), 449–454.

    Article  CAS  Google Scholar 

  • Vamosvigyazo, L. (1995). Prevention of enzymatic browning in fruits and vegetables—a review of principles and practice. Enzymatic Browning and its Prevention, 600, 49–62.

    Article  CAS  Google Scholar 

  • van Boekel, M. (2008). Kinetic modeling of food quality: a critical review. Comprehensive Reviews in Food Science and Food Safety, 8, 114–158.

    Google Scholar 

  • Voegel-Turenne, C., Mahfouz, M., & Allaf, K. (1999). Three models for determining the induction time in the browning kinetics of the granny smith apple under static conditions. Journal of Food Engineering, 41(3–4), 133–139.

    Article  Google Scholar 

  • Wibowo, S., Grauwet, T., Santiago, J. S., Tomic, J., Vervoort, L., Hendrickx, M., & Van Loey, A. (2015). Quality changes of pasteurised orange juice during storage: a kinetic study of specific parameters and their relation to colour instability. Food Chemistry, 187, 140–151.

    Article  CAS  Google Scholar 

  • Yang, T., Bai, Y., Wu, F., Yang, N., Zhang, Y., Bashari, M., Jin, Z., & Xu, X. (2014). Combined effects of glucose oxidase, papain and xylanase on browning inhibition and characteristics of fresh whole wheat dough. Journal of Cereal Science, 60(1), 249–254.

    Article  CAS  Google Scholar 

  • Zheng, H., & Lu, H. (2011). Use of kinetic, Weibull and PLSR models to predict the retention of ascorbic acid, total phenols and antioxidant activity during storage of pasteurized pineapple juice. LWT - Food Science and Technology, 44(5), 1273–1281.

    Article  CAS  Google Scholar 

  • Zhu, Y., Pan, Z., McHugh, T. H., & Barrett, D. M. (2010). Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating. Journal of Food Engineering, 97(1), 8–16.

    Article  CAS  Google Scholar 

  • Zhu, Y., Wang, P., Wang, F., Zhao, M., Hu, X., & Chen, F. (2015). The kinetics of the inhibition of acrylamide by glycine in potato model systems. Journal of the Science of Food and Agriculture, 96(2), 548–554.

  • Zwietering, M., Rombouts, F., & Van ‘t Riet, K. (1993). Some aspects of modelling microbial quality of food. Food Control, 4(2), 89–96.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the project FONDECYT-Chile No. 1130745.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Quevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quevedo, R., Díaz, O., Valencia, E. et al. Differences Between the Order Model and the Weibull Model in the Modeling of the Enzymatic Browning. Food Bioprocess Technol 9, 1961–1967 (2016). https://doi.org/10.1007/s11947-016-1775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1775-1

Keywords

Navigation