Skip to main content
Log in

Quantification of the Browning Kinetic on Pita Bread Using Fractal Method

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Browning kinetic was quantified in two types of pita bread based on the resulting color heterogeneity formed on their surface due to toasting them at four different temperature states (160, 180, 200, and 220 °C correspondingly). In the browning kinetic description, a fractal method was used. The fractal method measures color intensity resulting from toast assuming a non-homogenous distribution of the formed color during the toasting process. Simultaneously, the conventional method was also used to determine enzymatic browning kinetics among the three darkest toast colors. The kinetic of both methods were compared under the very same conditions. In order to gather data, computer vision was employed for 1 to 2 h (taking pictures every 15 s) allowing to accumulate a considerable amount of data (around 500 points per kinetic). In the results, a fractal method was applied to keep a record of the pita bread browning and to determine the fractal kinetic rate. The browning rate measured using the fractal method was always higher than when applying the traditional method. Furthermore, it was possible to apply the Arrhenius Law to calculate corresponding activation energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ameur, L. A., Mathieu, O., Lalanne, V., Trystram, G., & Birlouez-Aragon, I. (2007). Comparison of the effects of sucrose and hexose on furfural formation and browning in cookies baked at different temperatures. Food Chemistry, 101(4), 1407–1416.

    Article  CAS  Google Scholar 

  • Bayindirli, A., Khalafi, S., & Yeniceri, A. (1995). Nonenzymatic browning in clarified apple juice at high-temperatures—a response-surface analysis. Journal of Food Processing and Preservation, 19(3), 223–227.

    Article  Google Scholar 

  • Boonchiangma, S., Chanthai, S., Srijaranai, S., & Srijaranai, S. (2011). Chemical compositions and non-enzymatic browning compounds of thai honey: a kinetic study. Journal of Food Process Engineering, 34(5), 1584–1596.

    Article  CAS  Google Scholar 

  • Fellows, P. J. (2000). Food processing technology: principles and practice (2nd ed.). USA: CRC Press.

    Book  Google Scholar 

  • GoÌkmen, V., Şenyuva, H. Z., Dülek, B., & Çetin, A. E. (2007). Computer vision-based image analysis for the estimation of acrylamide concentrations of potato chips and french fries. Food Chemistry, 101(2), 791–798.

    Article  Google Scholar 

  • GoÌkmen, V., Açar, O., Arribas-Lorenzo, G., & Morales, F. (2008). Investigating the correlation between acrylamide content and browning ratio of model cookies. Journal of Food Engineering, 87(3), 380–385.

    Article  Google Scholar 

  • Gökmen, V., Açar, Ö.Ç., Köksel, H., & Acar J. (2007). Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chemistry, 104(3):1136–1142.

  • Gonzales-Barron, U., & Butler, F. (2008). Fractal texture analysis of bread crumb digital images. European Food Research and Technology, 226(4), 721–729.

    Article  CAS  Google Scholar 

  • Haase, P. T., Kanzler, C., Hildebrandt, J., & Kroh, L. W. (2017). Browning potential of C-6-alpha-dicarbonyl compounds under Maillard conditions. Journal of Agricultural and Food Chemistry, 65(9), 1924–1931.

    Article  CAS  Google Scholar 

  • Hong, P. K., & Betti, M. (2016). Non-enzymatic browning reaction of glucosamine at mild conditions: relationship between colour formation, radical scavenging activity and alpha-dicarbonyl compounds production. Food Chemistry, 212, 234–243.

    Article  CAS  Google Scholar 

  • Le-bail, A., Dessev, T., Leray, D., Lucas, T., Mariani, S., Mottollese, G., & Jury, V. (2011). Influence of the amount of steaming during baking on the kinetic of heating and on selected quality attributes of bread. Journal of Food Engineering, 105(2), 379–385.

    Article  Google Scholar 

  • Lee, Y. Y., Tang, T. K., Phuah, E. T., Alitheen, N. B. M., Tan, C. P., & Lai, O. M. (2017). New functionalities of Maillard reaction products as emulsifiers and encapsulating agents, and the processing parameters: a brief review. Journal of the Science of Food and Agriculture, 97(5), 1379–1385.

  • Leon, K., Mery, D., Pedreschi, F., & Leon, J. (2006). Color measurement in L*a*b* units from RGB digital images. Food Research International, 39, 1084–1091.

    Article  Google Scholar 

  • Lei, H., Fulcher, G., Ruan, R., & Lengerich, B. (2007). Assessment of color development due to twin-screw extrusion of rice–glucose–lysine blend using image analysis. LWT-Food Science and Technology, 40, 1224–1231.

  • Miao, S., & Roos, Y. H. (2004). Nonenzymatic browning kinetics of a carbohydrate-based low-moisture food system at temperatures applicable to spray drying. Journal of Agricultural and Food Chemistry, 52(16), 5250–5257.

    Article  CAS  Google Scholar 

  • Mundt, S., & Wedzicha, B. L. (2007). A kinetic model for browning in the baking of biscuits: effects of water activity and temperature. LWT- Food Science and Technology, 40(6), 1078–1082.

    Article  CAS  Google Scholar 

  • Noshad, M., Mohebbi, M., Ansarifar, E., & Behbahani, B. A. (2015). Quantification of enzymatic browning kinetics of quince preserved by edible coating using the fractal texture Fourier image. Journal of Food Measurement and Characterization, 9, 375–381.

    Article  Google Scholar 

  • Patel, A. A., Gandhi, H., Singh, S., & Patil, G. R. (1996). Shelf-life modeling of sweetened condensed milk based on kinetics of Maillard browning. Journal of Food Processing and Preservation, 20(6), 431–451.

    Article  Google Scholar 

  • Pedreschi, F., Kaack, K., & Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology, 37(6), 679–685.

    Article  CAS  Google Scholar 

  • Pedreschi, F., Leon, J., Mery, D., & Moyano, P. (2006). Development of a computer vision system to measure the color of potato chips. Food Research International, 39(10), 1092–1098.

    Article  Google Scholar 

  • Peleg, M., Engel, R., Gonzalez-Martinez, C., & Corradini, M. G. (2002). Non-Arrhenius and non-WLF kinetics in food systems. Journal of the Science of Food and Agriculture, 82(12), 1346–1355.

    Article  CAS  Google Scholar 

  • Purlis, E., & Salvadori, V. (2007). Bread browning kinetics during baking. Journal of Food Engineering, 80(4), 1107–1115.

    Article  CAS  Google Scholar 

  • Quevedo, R., Mendoza, F., Aguilera, J. M., Chanona, J., & Gutierrez-Lopez, G. (2008). Determination of senescent spotting in banana (Musa cavendish) using fractal texture Fourier image. Journal of Food Engineering, 84(4), 509–515.

    Article  Google Scholar 

  • Quevedo, R., Díaz, O., Caqueo, A., Ronceros, B., & Aguilera, J. M. (2009a). Quantification of enzymatic browning kinetics in pear slices using non-homogenous L* color information from digital images. LWT - Food Science and Technology, 42(8), 1367–1373.

    Article  CAS  Google Scholar 

  • Quevedo, R., Jaramillo, M., Díaz, O., Pedreschi, F., & Aguilera, J. (2009b). Quantification of enzymatic browning in apple slices applying the fractal texture Fourier image. Journal of Food Engineering, 95(2), 285–290.

    Article  CAS  Google Scholar 

  • Quevedo, R., Ronceros, B., Garcia, K., Lopéz, P., & Pedreschi, F. (2011a). Enzymatic browning in sliced and puréed avocado: a fractal kinetic study. Journal of Food Engineering, 105(2), 210–215.

    Article  CAS  Google Scholar 

  • Quevedo, R., Valencia, E., Alvarado, F., Ronceros, B., & Bastias, J. (2011b). Comparison of whiteness index vs. fractal Fourier in the determination of bloom chocolate using image analysis. Food and Bioprocess Technology, 6(7), 1878–1884.

    Article  Google Scholar 

  • Quevedo, R., Valencia, E., Cuevas, G., Ronceros, B., Pedreschi, F., & Bastias, J. M. (2013). Color changes in the surface of fresh cut meat: a fractal kinetic application. Food Research International, 54(2), 1430–1436.

    Article  CAS  Google Scholar 

  • Quevedo, R., Diaz, O., Valencia, E., Pedreschi, F., Bastias, J. M., & Siche, R. (2016a). Differences between the order model and the Weibull model in the modeling of the enzymatic browning. Food and Bioprocess Technology, 9(11), 1961–1967.

    Article  CAS  Google Scholar 

  • Quevedo, R., Pedreschi, F., Bastias, J. M., & Diaz, O. (2016b). Correlation of the fractal enzymatic browning rate with the temperature in mushroom, pear and apple slices. LWT- Food Science and Technology, 65, 406–413.

    Article  CAS  Google Scholar 

  • Ramirez-Jimenez, A., Guerra-Hernandez, E., & Garcia-Villanova, B. (2000). Browning indicators in bread. Journal of Agricultural and Food Chemistry, 48(9), 4176–4181.

    Article  CAS  Google Scholar 

  • Russ, J. (1994). Fractal surfaces (1st ed.). New York and London, Rayleigh: Plenum Press.

    Book  Google Scholar 

  • Smith, I. W. M. (2008). The temperature-dependence of elementary reaction rates: beyond Arrhenius. Chemical Society Reviews, 37(4), 812–826.

    Article  CAS  Google Scholar 

  • Srivastava, R., Bousquières, J., Cepeda-Vázquez, M., Roux, S., Bonazzi, C. & Rega, B. (2017). Kinetic study of furan and furfural generation during baking of cake models. Food Chemistry. https://doi.org/10.1016/j.foodchem.2017.06.126.

  • Vaikousi, H., Koutsoumanis, K., & Biliaderis, C. (2009). Kinetic modelling of non-enzymatic browning in honey and diluted honey systems subjected to isothermal and dynamic heating protocols. Journal of Food Engineering, 95, 541–550.

  • Wegener, S., Kaufmann, M., & Kroh, L. W. (2017). Influence of L-pyroglutamic acid on the color formation process of non-enzymatic browning reactions. Food Chemistry, 232, 450–454.

    Article  CAS  Google Scholar 

  • Zhang, L., Putranto, A., Zhou, W. B., Boom, R. M., Schutyser, M. A. I., & Chen, X. D. (2016). Miniature bread baking as a timesaving research approach and mathematical modeling of browning kinetics. Food and Bioproducts Processing, 100, 401–411.

    Article  Google Scholar 

  • Zwietering, M., Jongenburger, I., Rombouts, M., & Van’t riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875–1881.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from project FNI 09/15 Universidad de Los Lagos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Quevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quevedo, R., Rojas, R., Pedreschi, F. et al. Quantification of the Browning Kinetic on Pita Bread Using Fractal Method. Food Bioprocess Technol 11, 201–208 (2018). https://doi.org/10.1007/s11947-017-2006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-2006-0

Keywords

Navigation