Skip to main content
Log in

Methods and tools for identifying and leveraging additive manufacturing design potentials

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) allows the fabrication of complex design solutions and opens up new opportunities for improved products. To identify and optimally leverage these potentials, they must be considered as early as possible in new product development processes. Besides restrictive design rules, design for additive manufacturing (DFAM) thus particularly requires new opportunistic methods and tools in conceptual design and in the first steps of embodiment design. In this paper, AM design complexities and their benefits for new products are thoroughly analyzed and systematized. Many design methods from general design methodology can support the utilization of AM design potentials by their inherent nature of expanding the solution space. A criteria-based evaluation provides the basis for selecting and recommending appropriate design methods in the context of conceptual DFAM. To further adapt these methods to the identified AM design potentials, they are enriched by additional digital and physical DFAM tools. The combination of methods and tools is tested in a workshop environment with DFAM novices and DFAM experts to validate its practical applicability. It is shown that methodological support tailored to DFAM expertise and individual preferences can foster design potential utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adam, G.A.O., Zimmer, D.: On design for additive manufacturing: evaluating geometrical limitations. Rapid Prototyp. J. 21(6), 662–670 (2015). doi:10.1108/RPJ-06-2013-0060

    Article  Google Scholar 

  2. Andreasen, M.M., Hansen, C.T., Cash, P.: Conceptual Design: Interpretations, Mindset and Models. Springer, New York (2015)

    Book  Google Scholar 

  3. Baldinger, M., Leutenecker, B., Rippel, M.: Strategische Relevanz generativer Fertigungsverfahren. Ind. Manag. 29(2), 11–14 (2013)

    Google Scholar 

  4. Bavendiek, A.K., Inkermann, D., Vietor, T.: Teaching design methods with the interactive ‘methodos’ portal. In: Marjanovic, D., Storga, M., Pavkovic, N., Bojcetic, N., Skec, S. (eds.) Proceedings of the Design 2016 14th International DESIGN Conference, pp. 2049–2058. (2016)

  5. Becker, R., Grzesiak, A., Henning, A.: Rethink assembly design. Assem. Autom. 25(4), 262–266 (2005). doi:10.1108/01445150510626370

    Article  Google Scholar 

  6. Bin Maidin, S., Campbell, I., Pei, E.: Development of a design feature database to support design for additive manufacturing. Assem. Autom. 32(3), 235–244 (2012). doi:10.1108/01445151211244375

    Article  Google Scholar 

  7. Boothroyd, G., Dewhurst, P., Knight, W.A.: Product Design for Manufacture and Assembly, 3rd edn. CRC Press, Boca Raton (2011)

    Google Scholar 

  8. Bralla, J.G.: Design for Manufacturability Handbook, 2nd edn. McGraw-Hill, New York (1999)

    Google Scholar 

  9. Cross, N.: Engineering Design Methods: Strategies for Product Design, 3rd edn. Wiley, Chichester (2000)

    Google Scholar 

  10. Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 5th edn. Hanser, München Wien (2013)

    Book  Google Scholar 

  11. Emmelmann, C., Sander, P., Kranz, J., Wycisk, E.: Laser additive manufacturing and bionics: redefining lightweight design. Phys. Proc. 12, Part A, 364–368 (2011). doi:10.1016/j.phpro.2011.03.046

    Article  Google Scholar 

  12. Fischer, X., Nadeau, J.P.: Interactive design: then and now. In: Fischer, X., Nadeau, J.P. (eds.) Research in Interactive Design Vol. 3: Virtual, Interactive and Integrated Product Design and Manufacturing for Industrial Innovation, pp. 1–5. Springer, Paris (2011)

    Chapter  Google Scholar 

  13. Franke, H.J., Deimel, M.: Selecting and combining methods for complex problem solving within the design process. In: Marjanovic, D. (ed.) Proceedings of Design 2004, the 8th International DESIGN Conference, pp. 213–218. Dubrovnik (2004)

  14. Gardan, N., Schneider, A.: Topological optimization of internal patterns and support in additive manufacturing. J. Manuf. Syst. 37, 417–425 (2014). doi:10.1016/j.jmsy.2014.07.003

    Article  Google Scholar 

  15. Garner, S., McDonagh-Philp, D.: Problem interpretation and resolution via visual stimuli: the use of ’mood boards’ in design education. J. Art Des. Educ. 20(1), 57–64 (2001). doi:10.1111/1468-5949.00250

    Article  Google Scholar 

  16. Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing, 2nd edn. Springer, New York (2015)

    Book  Google Scholar 

  17. Glasschroeder, J., Prager, E., Zaeh, M.F.: Powder-bed-based 3D-printing of function integrated parts. Rapid Prototyp. J. 21(2), 207–215 (2015). doi:10.1108/RPJ-12-2014-0172

    Article  Google Scholar 

  18. Huang, G.Q.: Design for X: Concurrent Engineering Imperatives. Springer, Dondrecht (1996)

    Book  Google Scholar 

  19. Kranz, J., Herzog, D., Emmelmann, C.: Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4. J. Laser Appl. 27(S1), S14,001–1–16 (2015). doi:10.2351/1.4885235

    Article  Google Scholar 

  20. Kumke, M., Watschke, H., Vietor, T.: A new methodological framework for design for additive manufacturing. Virtual Phys. Prototyp. 11(1), 3–19 (2016). doi:10.1080/17452759.2016.1139377

    Article  Google Scholar 

  21. Laverne, F., Segonds, F., Anwer, N., Le Coq, M.: Assembly based methods to support product innovation in design for additive manufacturing: an exploratory case study. J. Mech. Des. 137(12), 121,701–1–8 (2015). doi:10.1115/1.4031589

    Article  Google Scholar 

  22. Laverne, F., Segonds, F., D’Antonio, G., Le Coq, M.: Enriching design with x through tailored additive manufacturing knowledge: a methodological proposal. Int. J. Interact. Des. Manuf. (2016). doi:10.1007/s12008-016-0314-7

    Google Scholar 

  23. Leary, M., Mazur, M., McMillan, M., Chirent, T., Sun, Y., Qian, M., Easton, M., Brandt, M.: Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater. Des. 98, 344–357 (2016). doi:10.1016/j.matdes.2016.02.127

    Article  Google Scholar 

  24. Lopes, A.J., MacDonald, E., Wicker, R.B.: Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyp. J. 18(2), 129–143 (2012). doi:10.1108/13552541211212113

    Article  Google Scholar 

  25. Mavroidis, C., DeLaurentis, K.J., Won, J., Alam, M.: Fabrication of non-assembly mechanisms and robotic systems using rapid prototyping. J. Mech. Des. 123, 516–524 (2001). doi:10.1115/1.1415034

    Article  Google Scholar 

  26. McDonagh, D., Storer, I.: Mood boards as a design catalyst and resource: researching an under-researched area. Des. J. 7(3), 16–31 (2004). doi:10.2752/146069204789338424

    Google Scholar 

  27. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic Approach, 3rd edn. Springer, London (2007). doi:10.1007/978-1-84628-319-2

    Book  Google Scholar 

  28. Petrovic, V., Gonzalez, J.V.H., Ferrando, O.J., Gordillo, J.D., Puchades, J.R.B., Grian, L.P.: Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res. 49(4), 1061–1079 (2011). doi:10.1080/00207540903479786

  29. Prüß, H., Vietor, T.: Design for fiber-reinforced additive manufacturing. ASME J. Mech. Des. 137, 111,409 (2015). doi:10.1115/1.4030993

    Article  Google Scholar 

  30. Rosen, D.W.: Computer-aided design for additive manufacturing of cellular structures. Comput. Aided Des. Appl. 4(5), 585–594 (2007). doi:10.1080/16864360.2007.10738493

    Article  Google Scholar 

  31. Ryan, G., Pandit, A., Apatsidis, D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27(13), 2651–2670 (2006). doi:10.1016/j.biomaterials.2005.12.002

    Article  Google Scholar 

  32. Sakae, Y., Kato, T., Sato, K., Matsuoka, Y.: Classificiation of design methods from the viewpoint of design science. In: International Design Conference—DESIGN 2016. Dubrovnik (2016)

  33. Tang, Y., Zhao, Y.F.: A survey of the design methods for additive manufacturing to improve functional performance. Rapid Prototyp. J. 22(3), 569–590 (2016). doi:10.1108/RPJ-01-2015-0011

    Article  MathSciNet  Google Scholar 

  34. Thomas, D.: The development of design rules for selective laser melting. Ph.D. thesis, University of Wales (2009). https://core.ac.uk/download/pdf/174630.pdf

  35. Tomiyama, T., Gu, P., Jin, Y., Lutters, D., Kind, C., Kimura, F.: Design methodologies: industrial and educational applications. CIRP Ann. Manuf. Technol. 58, 543–565 (2009). doi:10.1016/j.cirp.2009.09.003

    Article  Google Scholar 

  36. Vaezi, M., Chianrabutra, S., Mellor, B., Yang, S.: Multiple material additive manufacturing—part 1: a review. Virtual Phys. Prototyp. 8(1), 19–50 (2013). doi:10.1080/17452759.2013.778175

    Article  Google Scholar 

  37. Xu, X., Sachs, E., Allen, S.: The design of conformal cooling channels in injection molding tooling. Polym. Eng. Sci. 41(7), 1265–1279 (2001). doi:10.1002/pen.10827

    Article  Google Scholar 

  38. Yang, S., Tang, Y., Zhao, Y.F.: A new part consolidation method to embrace the design freedom of additive manufacturing. J. Manuf. Process. 20(3), 444–449 (2015). doi:10.1016/j.jmapro.2015.06.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kumke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumke, M., Watschke, H., Hartogh, P. et al. Methods and tools for identifying and leveraging additive manufacturing design potentials. Int J Interact Des Manuf 12, 481–493 (2018). https://doi.org/10.1007/s12008-017-0399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-017-0399-7

Keywords

Navigation