Skip to main content
Log in

Mercury(II) Biosorption Using Lessonia sp. Kelp

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lessonia nigrescens and Lessonia trabeculata kelps have been tested for the sorption of mercury from aqueous solutions. A pretreatment (using CaCl2) allowed stabilizing the biomass that was very efficient for removing Hg(II) at pH 6–7. Sorption isotherms were described by the Langmuir equation with sorption capacities close to 240–270 mg Hg g−1 at pH 6. The temperature had a negligible effect on the distribution of the metal at equilibrium. The presence of chloride anions had a more marked limiting impact than sulfate and nitrate anions. The uptake kinetics were modeled using the pseudo-second-order equation that fitted better experimental data than the pseudo-first-order equation. The particle size hardly influenced sorption isotherms and uptake kinetics, indicating that sorption occurs in the whole mass of the biosorbent and that intraparticle mass transfer resistance was not the limiting rate. Varying the sorbent dosage and the initial metal concentration influenced the equilibrium, but the kinetic parameters were not drastically modified. Metal can be eluted with hydrochloric acid, citric acid, or acidic KI solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Patterson, J. (1997). Aqueous Mercury Treatment. Washington: U.S.E.P.A.

    Google Scholar 

  2. Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2001). Journal of Hazardous Materials, B84, 73–82.

    Article  Google Scholar 

  3. Kuncoro, E. P., Roussy, J., & Guibal, E. (2005). Sep. Sci. Technol., 40, 659–684.

    Article  CAS  Google Scholar 

  4. Duche, S. N., Pawar, S. D., & Dhadke, P. M. (2002). Separation Science and Technology, 37, 2215–2229.

    Article  CAS  Google Scholar 

  5. Meera, R., Francis, T., & Reddy, M. L. P. (2001). Hydrometallurgy, 61, 93–103.

    Article  Google Scholar 

  6. Vieira, R. S., Guibal, E., Silva, E. A., & Beppu, M. M. (2007). Adsorption-Journal of the International Adsorption Society, 13, 603–611.

    CAS  Google Scholar 

  7. Atia, A. A., Donia, A. M., & Elwakeel, K. Z. (2005). Reactive and Functional Polymers, 65, 267–275.

    Article  CAS  Google Scholar 

  8. Guibal, E., Gavilan, K. C., Bunio, P., Vincent, T., & Trochimczuk, A. (2007). Separation Science and Technology, 43, 2406–2433.

    Article  Google Scholar 

  9. Volesky, B., & Holan, Z. R. (1995). Biotechnology Progress, 11, 235–250.

    Article  CAS  Google Scholar 

  10. Zeroual, Y., Moutaouakkil, A., Dzairi, F. Z., Talbi, M., Chung, P. U., Lee, K., et al. (2003). Bioresource Technology, 90, 349–351.

    Article  CAS  Google Scholar 

  11. Vilar, V. J. P., Botelho, C. M. S., & Boaventura, R. A. R. (2008). Biochemical Engineering Journal, 38, 319–325.

    Article  CAS  Google Scholar 

  12. Svecova, L., Spanelova, M., Kubal, M., & Guibal, E. (2006). Separation and Purification Technology, 52, 142–153.

    Article  CAS  Google Scholar 

  13. Vijayaraghavan, K., & Yun, Y.-Y. (2008). Biotechnology Advances, 26, 266–291.

    Article  CAS  Google Scholar 

  14. de França, F., Padilha, F., & da Costa, A. (2006). Applied Biochemistry and Biotechnology, 128, 23–32.

    Article  Google Scholar 

  15. Michalak, I. & Chojnacka, K. (2009). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-12009-18635-12017.

  16. Picardo, M., de Melo Ferreira, A., & da Costa, A. (2006). Applied Biochemistry and Biotechnology, 134, 193–206.

    Article  CAS  Google Scholar 

  17. Romera, E., González, F., Ballester, A., Blázquez, M. L., & Muñoz, J. A. (2007). Bioresource Technology, 98, 3344–3353.

    Article  CAS  Google Scholar 

  18. Tajes-Martinez, P., Beceiro-Gonzalez, E., Muniategui-Lorenzo, S., & Prada-Rodriguez, D. (2006). Talanta, 68, 1489–1496.

    Article  CAS  Google Scholar 

  19. Fourest, E., & Volesky, B. (1997). Applied Biochemistry and Biotechnology, 67, 215–226.

    Article  CAS  Google Scholar 

  20. Dubois, M. A., Dozol, J. F., & Massiani, C. (1995). Journal of Analytical and Applied Pyrolysis, 31, 129–140.

    Article  CAS  Google Scholar 

  21. Reategui, M., Maldonado, H., Ly, M., & Guibal, E. (2009). Advances in Materials Research, 71–73, 585–588.

    Article  Google Scholar 

  22. Decarvalho, R. P., Chong, K. H., & Volesky, B. (1994). Biotechnological Letters, 16, 875–880.

    Article  CAS  Google Scholar 

  23. Matheickal, J. T., Yu, Q., & Woodburn, G. M. (1999). Water Research, 33, 335–342.

    Article  CAS  Google Scholar 

  24. Ho, Y. S. (2006). Water Research, 40, 119–125.

    Article  CAS  Google Scholar 

  25. Liu, Y., & Liu, Y.-Y. (2007). Separation and Purification Technology, 61, 229–242.

    Article  CAS  Google Scholar 

  26. Mata, Y. N., Blázquez, M. L., Ballester, A., González, F., & Muñoz, J. A. (2008). Journal of Hazardous Materials, 158, 316–323.

    Article  CAS  Google Scholar 

  27. Davis, T. A., Volesky, B., & Mucci, A. (2003). Water Research, 37, 4311–4330.

    Article  CAS  Google Scholar 

  28. Malik, D. J., Streat, M., & Greig, J. (1999). Institution of Chemical Engineers Translations, 77, 227–233.

    CAS  Google Scholar 

  29. Hansen, H. K., Ribeiro, A., & Mateus, E. (2006). Minerals Engineering, 19, 486–490.

    Article  CAS  Google Scholar 

  30. Ghodbane, I., & Hamdaoui, O. (2008). Journal of Hazardous Materials, 160, 301–309.

    Article  CAS  Google Scholar 

  31. Kaçar, Y., Arpa, C., Tan, S., Denizli, A., Genç, O., & Arica, Y. (2002). Process Biochemistry, 37, 601–610.

    Article  Google Scholar 

  32. Bayramoglu, G., Tuzun, I., Celik, G., Yilmaz, M., & Arica, M. Y. (2006). International Journal of Mineral Processing, 81, 35–43.

    Article  CAS  Google Scholar 

  33. Lloyd-Jones, P. J., Rangel-Mendez, J. R., & Streat, M. (2004). Institution of Chemical Engineers Translations, 82B, 301–311.

    Google Scholar 

  34. Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., & Marhaba, T. F. (2006). Bioresource Technology, 97, 2321–2329.

    CAS  Google Scholar 

  35. Prasanna Kumar, Y., King, P., & Prasad, V. S. R. K. (2007). Chemical Engineering Journal, 129, 161–166.

    Article  Google Scholar 

  36. Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA) (2002) v. 3.1. http://www.kemi.kth.se/medusa. Accessed 7 February 2007.

  37. Chen, J. Z., Tao, X. C., Xu, J., Zhang, T., & Liu, Z. L. (2005). Process Biochemistry, 40, 3675–3679.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the European Commission for the funding of the project BIOPROAM (Contract no. AML/190901/06/18414/II-0548-FC-FA, in the framework of ALFA program). Authors acknowledge Jean-Marie Taulemesse (Centre des Matériaux de Grande Diffusion at Ecole des Mines d’Alès) for his technical support for SEM-EDAX analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Guibal.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. A1

(DOC 28 kb)

Fig. A2

(DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reategui, M., Maldonado, H., Ly, M. et al. Mercury(II) Biosorption Using Lessonia sp. Kelp. Appl Biochem Biotechnol 162, 805–822 (2010). https://doi.org/10.1007/s12010-010-8912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8912-5

Keywords

Navigation