Skip to main content
Log in

Production and Characterization of Extremophilic Proteinases From a New Enzyme Source, Barrientosiimonas sp. V9

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial proteases are widely used as commercial enzymes, which have an active role in several industrial processes. The aim of this study was to investigate the production and properties of extracellular proteases from Barrientosiimonas sp. strain V9. The cultivation conditions for protease production were studied using different carbon and nitrogen sources. Maximum protease production was obtained in medium containing 25 g L−1 sucrose, 7 g L−1 KNO3, and initial pH 7.0 at 35 °C and 150 rpm during 72 h. Under these conditions, maximum proteolytic activity reached 1200 U mL−1. The enzyme extract showed optimum activity at 60 °C, pH 9.0, and was stable from 30 to 50 °C within a pH range from 4.0 to 10.0 and NaCl concentration up to 2.5 M. The enzyme was stable in the presence of EDTA, urea, Triton X-100 and laundry detergent (sodium lauryl sulfate as main component). The addition of 1% sodium dodecyl sulfate, Tween-80, or Tween-20 increased the activity by 183% and 119% respectively, while 2-mercaptoethanol reduced the activity to 71%. Casein zymogram analysis revealed three hydrolysis zones suggesting that Barrientosiimonas sp. V9 expresses proteases with molecular weights about 60, 45, and 35 kDa, which were inhibited in the presence of phenylmethylsulfonyl fluoride. Barrientosiimonas sp. V9 produces halotolerant serine proteases with great biotechnological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar, L., Awashthi, G., & Singh, B. (2011). Extremophiles: A novel source of industrially important enzymes. Biotechnology, 10(2), 121–125. https://doi.org/10.3923/biotech.2011.121.135.

    Article  CAS  Google Scholar 

  2. Littlechild, J. A. (2015). Enzymes from extreme environments and their industrial applications. Front. Bioeng. Biotechnol., 3, 161. https://doi.org/10.3389/fbioe.2015.00161.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh, R., Kumar, M., Mittal, A., & Metha, P. K. (2016). Microbial enzymes: Industrial progress in 21st century. 3 Biotech, 6(2), 174. https://doi.org/10.1007/s13205-016-0485-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gupta, R., Beg, Q., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Journal of Applied Microbiology and Biotechnology, 59(1), 15–31. https://doi.org/10.1007/s00253-002-0975-y.

    Article  CAS  PubMed  Google Scholar 

  5. Elibol, M., & Moreira, A. R. (2005). Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation. Process Biochemistry, 40(5), 1951–1956. https://doi.org/10.1016/j.procbio.2004.07.010.

    Article  CAS  Google Scholar 

  6. Prakasham, R. S., Rao, C. S., & Sarma, P. N. (2006). Green gram husk—an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresource Technology, 97(13), 1449–1454. https://doi.org/10.1016/j.biortech.2005.07.015.

    Article  CAS  PubMed  Google Scholar 

  7. Bhunia, B., Basak, B., & Dey, A. (2012). J. Biochem. Technol., 3, 448–457.

    CAS  Google Scholar 

  8. Beg, Q. K., Saxena, R. K., & Gupta, R. (2002). De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochemistry, 37(10), 1103–1109. https://doi.org/10.1016/S0032-9592(01)00320-X.

    Article  CAS  Google Scholar 

  9. Wang, S. L., Yang, C. H., Liang, T. W., & Yen, Y. H. (2008). Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. Bioresource Technology, 99(9), 3700–3707. https://doi.org/10.1016/j.biortech.2007.07.036.

    Article  CAS  PubMed  Google Scholar 

  10. Stackebrandt, E., & Schumann, P. (2000). Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. International Journal of Systematic and Evolutionary Microbiology, 50(3), 1279–1285. https://doi.org/10.1099/00207713-50-3-1279.

    Article  CAS  PubMed  Google Scholar 

  11. Al Matar, M., Eldeeb, M., Makky, E. A., Köksal, F., Var, I., & Kayar, B. (2017). Are there any other compounds isolated from dermacoccus spp at all? Current Microbiology, 74(1), 132–144. https://doi.org/10.1007/s00284-016-1152-3.

    Article  CAS  Google Scholar 

  12. Parag, B., Sasikala, C., & Ramana, C. V. (2015). Barrientosiimonas endolithica sp. nov., isolated from pebbles, reclassification of the only species of the genus Tamlicoccus, Tamlicoccus marinus Lee 2013, as Barrientosiimonas marina comb. nov. and emended description of the genus Barrientosiimonas. International Journal of Systematic and Evolutionary Microbiology, 65(9), 3031–3036. https://doi.org/10.1099/ijs.0.000374.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, L. H., Cheah, Y. K., Sidik, S. M., Xie, Q. Y., Tang, Y. L., Lin, H. P., Ab Mutalib, N. S., & Hong, K. (2013). Barrientosiimonas humi gen. nov., sp. nov., an actinobacterium of the family Dermacoccaceae. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 1), 241–248. https://doi.org/10.1099/ijs.0.038232-0.

    Article  CAS  PubMed  Google Scholar 

  14. Ai, M. J., Sun, Y., Sun, H. M., Liu, H. Y., Yu, L. Y., & Zhang, Y. Q. (2017). Allobranchiibius huperziae gen. nov., sp. nov., a member of Dermacoccaceae isolated from the root of a medicinal plant Huperzia serrata (Thunb.). International Journal of Systematic and Evolutionary Microbiology, 67(10), 4210–4215. https://doi.org/10.1099/ijsem.0.002284.

    Article  CAS  PubMed  Google Scholar 

  15. Nho, S. W., Kim, S. J., Kweon, O., Howard, P. C., Moon, M. S., Sadrieh, N. K., & Cerniglia, C. E. (2018). Microbiological survey of commercial tattoo and permanent makeup inks available in the United States. Journal of Applied Microbiology and Biotechnology, 124(5), 1294–1302. https://doi.org/10.1111/jam.13713.

    Article  CAS  Google Scholar 

  16. Flores-Fernández, C. N., Cárdenas-Fernández, M., Dobrijevic, D., Jurlewicz, K., Zavaleta, A. I., Ward, J. M., & Lye, G. J. (2019). Novel extremophilic proteases fromPseudomonas aeruginosaM211 and their application in the hydrolysis of dried distiller's grain with solubles. Biotechnol. Progr., 35(1), e2728. https://doi.org/10.1002/btpr.2728.

    Article  CAS  Google Scholar 

  17. El-Sayed, E. M., Saad, M. M., Awad, H. M., Selim, M. H., & Hassan, H. M. (2012). Optimization conditions of extracellular proteases production from a newly isolatedstreptomyces PSEUDOGRISIOLUSNRC-15. E-J. Chem., 9(2), 949–961. https://doi.org/10.1155/2012/168540.

    Article  CAS  Google Scholar 

  18. Jayasree, D., Kumari, T.D.S., Kishor, P.B.K., Lakshmi, M.V. and Narasu, M.L. (2010) InterJRI Sci. Technol. 1, 79-82. Available at: arxiv.org/abs/1002.0048

  19. Abdelwahed, N. A. M., Danial, E. N., El-Naggar, N. E. A., & Mohamed, A. A. (2013). Optimization of alkaline protease production by <I>streptomyces ambofaciens</I> in free and immobilized form. American Journal of Biochemistry and Biotechnology, 10(1), 1–13. https://doi.org/10.3844/ajbbsp.2014.1.13.

    Article  CAS  Google Scholar 

  20. Hosseinis, S. V., Saffaris, Z., Farhanghis, A., Atyabis, S. M., & Norouzian, D. (2016). Iran J. Microbiol., 8, 8–13 Available at: ijm.tums.ac.ir/index.php/ijm/article/view/755.

    Google Scholar 

  21. El-Shafei, H. A., Abdel-Aziz, M. S., Ghaly, M. F., & Abdalla, A. A. H. (2010). in Proceeding of fifth scientific environmental conference (pp. 125–142). Zagazig: Zagazig University.

    Google Scholar 

  22. Myers, R. H., & Montgomery, R. C. (2002). Response surface methodology: process and product optimization using designed experiments (2nd ed.). New York: Wiley.

    Google Scholar 

  23. Coelho, D. F., Saturnino, T. P., Fernandes, F. F., Mazzola, P. G., Silveira, E., & Tambourgi, E. B. (2016). Azocasein substrate for determination of proteolytic activity: reexamining a traditional method using bromelain samples. Biomed Res. Int., 2016, 8409183. https://doi.org/10.1155/2016/8409183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mesas, J. M., Gil, J. A., & Martín, J. F. (1990). Characterization and partial purification of l-asparaginase from corynebacterium glutamicum. J. Gen. Microbiol., 136(3), 515–519. https://doi.org/10.1099/00221287-136-3-515.

    Article  CAS  PubMed  Google Scholar 

  25. Sivakumar, K., Sahu, M. K., Thangaradjou, T., & Kannan, L. (2007). Research on marine actinobacteria in India. Indian Journal of Microbiology, 47(3), 186–196. https://doi.org/10.1007/s12088-007-0039-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riffel, A., Daroit, D. J., & Brandelli, A. (2011). Nutritional regulation of protease production by the feather-degrading bacterium Chryseobacterium sp. kr6. New Biotechnol., 28(2), 153–157. https://doi.org/10.1016/j.nbt.2010.09.008.

    Article  CAS  Google Scholar 

  27. Gupta, R., Beg, Q. K., Khan, S., & Chauhan, B. (2003). An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Applied Microbiology and Biotechnology, 60(4), 381–395. https://doi.org/10.1007/s00253-002-1142-1.

    Article  CAS  Google Scholar 

  28. Hashizume, T., & Yamagami, T. (1967). Agricultural and Biological Chemistry, 31(4), 324–329. https://doi.org/10.1271/bbb1961.30.319.

    Article  CAS  Google Scholar 

  29. Sharma, A. K., & Singh, S. P. (2016). Effect of amino acids on the repression of alkaline protease synthesis in haloalkaliphilic Nocardiopsis dassonvillei. Biotechnol. Rep., 12, 40–51. https://doi.org/10.1016/j.btre.2016.10.004.

    Article  Google Scholar 

  30. Joo, H. S., Kumar, C. G., Park, G. C., Kim, K. T., Paik, S. R., & Chang, C. S. (2002). Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem., 38(2), 155–159. https://doi.org/10.1016/S0032-9592(02)00061-4.

    Article  CAS  Google Scholar 

  31. Nadeem, M., Qazi, J. I., Baig, S., & Syed, Q. (2008). Food Technology and Biotechnology, 46, 388–394 Available at: hrcak.srce.hr/30415.

    CAS  Google Scholar 

  32. Kumar, S., Karan, R., Kapoor, S., Singh, S. P., & Khare, S. K. (2012). Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz. J. Microbiol., 43(4), 1595–1603. https://doi.org/10.1590/S1517-83822012000400044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prakash, D., Nawani, N., Prakash, M., Bodas, M., Mandal, A., Khetmalas, M., & Kapadnis, B. (2013). Actinomycetes: A repertory of green catalysts with a potential revenue resource. Biomed Res. Int., 2013, 264020. https://doi.org/10.1155/2013/264020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vázquez, S. C., Hernández, E., & MacCormack, W. P. (2008). Extracellular proteases from the Antarctic marine pseudoalteromonas sp. P96-47 strain. Revista Argentina de Microbiologia, 40(1), 63–71. PMID: 18669056.

    PubMed  Google Scholar 

  35. Abd Samad, N. S., Amid, A., Jimat, D. N., & Ab Shukor, N. A. (2017). Isolation and identification of halophilic bacteria producing halotolerant protease. Sci. Herit J., 1(1), 7–9. https://doi.org/10.26480/gws.01.2017.07.09.

    Article  Google Scholar 

  36. Margesin, R., & Schinner, F. (2001). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles, 5(2), 73–83. https://doi.org/10.1007/s007920100184.

    Article  CAS  PubMed  Google Scholar 

  37. Puri, A., & Kumar, M. (2012). A review of permissible limits of drinking water. Indian J. Occup. Environ. Med., 16(1), 40–44. https://doi.org/10.4103/0019-5278.99696.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vallee, L. B., & Ulmer, D. D. (1972). Biochemical effects of mercury, cadmium, and Lead. Annual Review of Biochemistry, 41(1), 91–128. https://doi.org/10.1146/annurev.bi.41.070172.000515.

    Article  CAS  PubMed  Google Scholar 

  39. Ghorbel, S., Kammoun, M., Soltana, H., Nasri, M., & Hmidet, N. (2014). Streptomyces flavogriseusHS1: isolation and characterization of extracellular proteases and their compatibility with laundry detergents. Biomed Res. Int., 2014, 345980. https://doi.org/10.1155/2014/345980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gupta, R., Gupta, K., Saxena, R. K., & Khan, S. (1999). Biotechnol. Lett., 21(2), 135–138. https://doi.org/10.1023/A:1005478117918.

    Article  CAS  Google Scholar 

  41. Otzen, D. E., & Oliveberg, M. (2002). Burst-phase expansion of native protein prior to global unfolding in SDS. J. Mol. Biol., 315(5), 1231–1240. https://doi.org/10.1006/jmbi.2001.5300.

    Article  CAS  PubMed  Google Scholar 

  42. Patel, G. K., Kawale, A. A., & Sharma, A. K. (2012). Purification and physicochemical characterization of a serine protease with fibrinolytic activity from latex of a medicinal herb Euphorbia hirta. Plant Physiology and Biochemistry, 52, 104–111. https://doi.org/10.1016/j.plaphy.2011.12.004.

    Article  CAS  PubMed  Google Scholar 

  43. Joshi, S., & Satyanarayana, T. (2013). Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresource Technology, 131, 76–85. https://doi.org/10.1016/j.biortech.2012.12.124.

    Article  CAS  PubMed  Google Scholar 

  44. Daroit, D. J., Sant'Anna, V., & Brandelli, A. (2011). Kinetic stability modelling of keratinolytic protease p45: influence of temperature and metal ions. Applied Biochemistry and Biotechnology, 165(7-8), 1740–1753. https://doi.org/10.1007/s12010-011-9391-z.

    Article  CAS  PubMed  Google Scholar 

  45. Amoozegar, M.A. and Siroosi, M. (2015) in Halophiles: biodiversity and sustainable explotation (Meaheshawari, D.K. and Saraf, M., eds.), Springer, Cham, pp. 355-378. https://doi.org/10.1007/978-3-319-14595-2_13

    Google Scholar 

Download references

Funding

This work has received financial support from grants 007-FONDECYT-2014 (Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica, Peru) and VRIP-A18040361 (Vicerrectorado de Investigación y Posgrado de la Universidad Nacional Mayor de San Marcos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Santos, J.C., Zavaleta, A.I., Flores-Fernández, C.N. et al. Production and Characterization of Extremophilic Proteinases From a New Enzyme Source, Barrientosiimonas sp. V9. Appl Biochem Biotechnol 190, 1060–1073 (2020). https://doi.org/10.1007/s12010-019-03140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03140-9

Keywords

Navigation