Skip to main content

Advertisement

Log in

Progress and Prospect of Essential Mineral Nanoparticles in Poultry Nutrition and Feeding—a Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nanobiotechnology is a growing field in animal and veterinary sciences for various practical applications including diagnostic, therapeutic, and nutritional applications. Recently, nanoforms or nanoparticles (NP) of essential minerals have been explored for growth performance, feed utilization, and health status of animals. Various mineral NP, such as calcium, zinc, copper, selenium, and chromium, have been studied in different farm animals including poultry. Because mineral NP are smaller in size, and show different chemical and physical properties, they are usually absorbed in greater amounts from gastrointestinal tract and exert enhanced biological effects in the target tissues of animals. In various studies, mineral NP have been comparatively studied relating to its larger inorganic and organic particles in poultry. There are contradictory findings among the studies on comparative improvement of production performance and other mineral functions perhaps due to different sizes, shapes, and properties of NP, and interactions of minerals present in basal diets. There are not many studies correlating physical and chemical properties of mineral NP and their biological functions in the body. Nonetheless, it appears that mineral NP have potential for their uses as mineral supplements in preference to inorganic mineral supplements for their better absorption avoiding antagonistic interactions with other minerals, growth performance, and physiological functions, especially at lower doses compared with the doses that are recommended for their larger particles. Supplementation of mineral NP in diets could be a promising option in the future. This review summarizes the studies of different essential mineral NP used as mineral supplements for feed intake, growth performance, egg production and quality, and blood variables in poultry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abd El-Hack ME, Alagawany M, Arif M, Emam M, Saeed M, Arain MA, Siyal FA, Patra A, Elnesr SS, Khan RU (2018) The uses of microbial phytases as a feed additive in poultry nutrition—a review. Ann Anim Sci 18:639–658

    Google Scholar 

  2. Abedini M, Shariatmadari F, Torshizi MK, Ahmadi H (2017) Effects of a dietary supplementation with zinc oxide nanoparticles, compared to zinc oxide and zinc methionine, on performance, egg quality, and zinc status of laying hens. Livest Sci 203:30–36

    Google Scholar 

  3. Abedini M, Shariatmadari F, Torshizi MAK, Ahmadi H (2018) Effects of zinc oxide nanoparticles on performance, egg quality, tissue zinc content, bone parameters, and antioxidative status in laying hens. Biol Trace Elem Res 184:259–267

    CAS  PubMed  Google Scholar 

  4. Ahmadi F, Kurdestani AH (2010) The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria 5:366–370

    CAS  Google Scholar 

  5. Ahmadi F, Ebrahimnezhad Y, Sis NM, Ghiasi J (2013) The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. Int J Biosci 3:23–29

    Google Scholar 

  6. Alagawany M, Farag MR, Abd El-Hack ME, Patra AK (2017) Heat stress: effects on productive and reproductive performance of quail. World Poult Sci J 73:747–756

    Google Scholar 

  7. Alagawany M, Farag MR, Dhama K, Patra A (2018) Nutritional significance and health benefits of designer eggs. World Poult Sci J 74:317–330

    Google Scholar 

  8. Ammerman CB, Baker DH, Lewis AJ (1995) Bioavailability of nutrients for animals: amino acids, minerals, and vitamins. Academic Press, New York

    Google Scholar 

  9. Andi MA, Shahamat A (2015) Effects of different levels of nano chromium chloride in diet on egg quality and blood chromium content of laying Japanese quail. Int J Adv Biol Biomed Res 3:378–383

    CAS  Google Scholar 

  10. Aparna N, Karunakaran R (2016) Effect of selenium nanoparticles supplementation on oxidation resistance of broiler chicken. Indian J Sci Technol 9:1–5

    CAS  Google Scholar 

  11. Bami K, Afsharmanesh M, Ebrahimnejad H (2019) Effect of dietary Bacillus coagulans and different forms of zinc on performance, intestinal microbiota, carcass and meat quality of broiler chickens. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-019-09558-1

  12. Bao YM, Choct M (2009) Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: a review. Anim Prod Sci 49:269–282

    CAS  Google Scholar 

  13. Batal AB, Parr TM, Baker DH (2001) Zinc bioavailability in tetrabasic zinc chloride and the dietary zinc requirement of young chicks fed a soy concentrate diet. Poult Sci 80:87–90

    CAS  PubMed  Google Scholar 

  14. Berenjian A, Sharifi SD, Mohammadi-Sangcheshmeh A, Ghazanfari S (2018) Effect of chromium nanoparticles on physiological stress induced by exogenous dexamethasone in Japanese quails. Biol Trace Elem Res 184:474–481

    CAS  PubMed  Google Scholar 

  15. Boostani A, Sadeghi AA, Mousavi SN, Chamani M, Kashan N (2015) Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livest Sci 178:330–336

    Google Scholar 

  16. Burleson DJ, Driessen MD, Penn RL (2004) On the characterization of environmental nanoparticles. J Environ Sci Health A 39:2707–2753

    Google Scholar 

  17. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71

    Google Scholar 

  18. Cai SJ, Wu CX, Gong LM, Song T, Wu H, Zhang LY (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 91:2532–2539

    CAS  PubMed  Google Scholar 

  19. Cai C, Qu XY, Wei YH, Yang AQ (2013) Nano-selenium: nutritional characteristics and application in chickens. Chinese J Anim Nutr 12:2818-2823

    Google Scholar 

  20. Cao Y, Roursgaard M, Kermanizadeh A, Loft S, Møller P (2015) Synergistic effects of zinc oxide nanoparticles and Fatty acids on toxicity to caco-2 cells. Int J Toxicol 34:67–76

    CAS  PubMed  Google Scholar 

  21. Chaudhry Q, Aitken R, Scotter R, Blackburn J, Ross B, Boxall A, Castle L, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam A 25:241–258

    CAS  Google Scholar 

  22. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    CAS  Google Scholar 

  23. Cholewińska E, Ognik K, Fotschki B, Zduńczyk Z, Juśkiewicz J (2018) Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One 13:e0197083

    PubMed  PubMed Central  Google Scholar 

  24. Cufadar Y, Göçmen R, Kanbur G, Yıldırım B (2019) Effects of dietary different levels of nano, organic and inorganic zinc sources on performance, eggshell quality, bone mechanical parameters and mineral contents of the tibia, liver, serum and excreta in laying hens. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01698-3

  25. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919

    PubMed  Google Scholar 

  26. Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845

    CAS  PubMed  Google Scholar 

  27. El-Kassas S, Abdo SE, El-Naggar K, Abdo W, Kirrella AAK, Nashar TO (2018) Ameliorative effect of dietary supplementation of copper oxide nanoparticles on commercial and heat-stress housing conditions. J Therm Biol 78:235–246

    CAS  PubMed  Google Scholar 

  28. Elkloub K, Moustafa ME, Ghazalah AA, Rehan AAA (2015) Effect of dietary nanosilver on broiler performance. Int J Poult Sci 14:177–182

    CAS  Google Scholar 

  29. Fairweather-Tait S (1997) Bioavailability of selenium. Eur J Clin Nutr 51:S20–S23

    PubMed  Google Scholar 

  30. Farag MR, Alagawany M, El-Hack MEA, Arif M, Ayasan T, Dhama K, Patra AK, Karthik K (2017) Role of chromium in poultry nutrition and health: beneficial applications and toxic effects. Int J Pharmacol 13:907–915

    CAS  Google Scholar 

  31. Fathi M (2016) Effects of zinc oxide nanoparticles supplementation on mortality due to ascites and performance growth in broiler chickens. Iranian J Appl Anim Sci 6:389–394

    CAS  Google Scholar 

  32. Feng M, Wang ZS, Zhou AG, Ai DW (2009) The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum-epithelial cells in primary culture. Pak J Nutr 8:1164–1166

    CAS  Google Scholar 

  33. Fondevila M, Herrer R, Casallas MC, Abecia L, Ducha JJ (2009) Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim Feed Sci Technol 150:259–269

    CAS  Google Scholar 

  34. Fröhlich E, Roblegg E (2012) Models for oral uptake of nanoparticles in consumer products. Toxicology 291:10–17

    PubMed  PubMed Central  Google Scholar 

  35. Gangadoo S, Stanley D, Hughes RJ, Moore RJ, Chapman J (2016) Nanoparticles in feed: progress and prospects in poultry research. Trends Food Sci Technol 58:115–126

    CAS  Google Scholar 

  36. Ganjigohari S, Ziaei N, RamzaniGhara A, Tasharrofi S (2018) Effects of nanocalcium carbonate on egg production performance and plasma calcium of laying hens. J Anim Physiol Anim Nutr 102:e225–e232

    CAS  Google Scholar 

  37. Gao C, Zhu L, Zhu F, Sun J, Zhu Z (2014) Effects of different sources of copper on Ctr1, ATP7A, ATP7B, MT and DMT1 protein and gene expression in Caco-2 cells. J Trace Elem Med Biol 28:344–350

    CAS  PubMed  Google Scholar 

  38. Ghosh A, Mandal GP, Roy A, Patra AK (2016) Effects of supplementation of manganese with or without phytase on growth performance, carcass traits, muscle and tibia composition, and immunity in broiler chickens. Livest Sci 191:80–85

    Google Scholar 

  39. Gonzales-Eguia A, Fu CM, Lu FY, Lien TF (2009) Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livest Sci 126:122–129

    Google Scholar 

  40. Gopi M, Pearlin B, Kumar RD, Shanmathy M, Prabakar G (2017) Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Int J Pharmacol 13:724–731

    CAS  Google Scholar 

  41. Grodzik M, Sawosz F, Sawosz E, Hotowy A, Wierzbicki M, Kutwin M, Jaworski S, Chwalibog A (2013) Nano-nutrition of chicken embryos: the effect of in ovo administration of diamond nanoparticles and L-glutamine on molecular responses in chicken embryo pectoral muscles. Int J Mol Sci 20:23033–23044

    Google Scholar 

  42. Habibian M, Sadeghi G, Ghazi S, Moeini MM (2015) Selenium as a feed supplement for heat-stressed poultry: a review. Biol Trace Elem Res 165:183–193

    CAS  PubMed  Google Scholar 

  43. Hafez A, Nassef E, Fahmy M, Elsabagh M, Bakr A, Hegazi E (2019) Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04344-6

  44. Hamidi O, Mohammad C, Hasan G, Ali A, Hassan M (2016) Effects of chromium (III) picolinate and chromium (III) picolinate nanoparticles supplementation on growth performance, organs weight and immune function in cyclic heat stressed broiler chickens. Vet Dergi Kafkas 1:10–16

    Google Scholar 

  45. Haq Z, Jain RK, Khan N, Dar MY, Ali S, Gupta M, Varun TK (2016) Recent advances in role of chromium and its antioxidant combinations in poultry nutrition: a review. Vet World 9:1392–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hassan HMA, Samy A, El-Sherbiny AE, Mohamed MA, Abd-Elsamee MO (2016) Application of nano-dicalcium phosphate in broiler nutrition: performance and excreted calcium and phosphorus. Asian J Anim Vet Adv 11:477–483

    CAS  Google Scholar 

  47. Henglein A (1993) Physicochemical properties of small metal particles in solution–microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471

    CAS  Google Scholar 

  48. Hillery A, Jani P, Florence A (1994) Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles. J Drug Target 2:151–156

    CAS  PubMed  Google Scholar 

  49. Hochella MF (2002) Nanoscience and technology the next revolution in the Earth sciences. Earth Planet Sci Lett 203:593–605

    CAS  Google Scholar 

  50. Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 177:204–210

    CAS  Google Scholar 

  51. Hung AT, Leury BJ, Sabin MA, Collins CL, Dunshea FR (2014) Dietary nano-chromium tripicolinate increases feed intake and decreases plasma cortisol in finisher gilts during summer. Trop Anim Health Prod 46:1483–1489

    PubMed  Google Scholar 

  52. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Janer G, Mas del Molino E, Fernandez-Rosas E, Fernandez A, Vazquez-Campos S (2014) Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicol Lett 228:103–110

    CAS  PubMed  Google Scholar 

  54. Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826

    CAS  PubMed  Google Scholar 

  55. Jankowski J, Ognik K, Stepniowska A, Zdunczyk Z, Kozoowski K (2018) The effect of manganese nanoparticles on apoptosis and on redox and immune status in the tissues of young turkeys. PLoS One 13:e0201487

    PubMed  PubMed Central  Google Scholar 

  56. Joshua PP, Valli C, Balakrishnan V (2016) Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Vet World 9:287–294

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jozwik A, Marchewka J, Strzałkowska N, Horbanczuk JO, Strabel MS, Cieslak A, Palka PL, Jopzefiak D, Kaminska A, Atanasov AG (2018) The effect of different levels of Cu, Zn and Mn nanoparticles in hen Turkey diet on the activity of aminopeptidases. Molecules 23:1150

    PubMed Central  Google Scholar 

  58. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    CAS  Google Scholar 

  59. Kang T, Guan R, Chen X, Song Y, Jiang H, Zhao J (2013) In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res Lett 8:496–498

    PubMed  PubMed Central  Google Scholar 

  60. Kar I, Mukhopadhayay SK, Patra AK, Pradhan S (2015) Metal concentrations and histopathological changes in goats (Capra hircus) reared near an industrial area of West Bengal, India. Arch Environ Contam Toxicol 69:32–43

    CAS  PubMed  Google Scholar 

  61. Kar I, Mukhopadhayay SK, Patra AK, Pradhan S (2018) Bioaccumulation of selected heavy metals and histopathological and hematobiochemical alterations in backyard chickens reared in an industrial area, India. Environ Sci Pollut Res 25:3905–3912

    CAS  Google Scholar 

  62. Karimi A, Sadeghi G, Vaziry A (2011) The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. J Appl Poult Res 20:203–209

    CAS  Google Scholar 

  63. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/jarabjc201705011

  64. Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31:240–248

    CAS  PubMed  Google Scholar 

  65. Khoobbakht Z, Mohammadi M, Mehr MRA, Mohammadghasemi F, Sohani MM (2018) Comparative effects of zinc oxide, zinc oxide nanoparticle and zinc-methionine on hatchability and reproductive variables in male Japanese quail. Anim Reprod Sci 192:84–90

    CAS  PubMed  Google Scholar 

  66. Kulak E, Ognik K, Stepniowska A, Sembratowicz I (2018) The effect of administration of silver nanoparticles on silver accumulation in tissues and immune and antioxidant status of chickens. J Anim Feed Sci 27:44–54

    Google Scholar 

  67. Lai SK, Wang YY, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–171

    CAS  PubMed  Google Scholar 

  68. Lee J, Hosseindoust A, Kim M, Kim K, Choi Y, Lee S, Lee S, Cho H, Kang WS, Chae B (2019) Biological evaluation of hot-melt extruded nano-selenium and the role of selenium on the expression profiles of selenium-dependent antioxidant enzymes in chickens. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01801-8

  69. Leeson S (2009) Copper metabolism and dietary needs. World Poult Sci 65:353–365

    Google Scholar 

  70. Li JL, Zhang L, Yang ZY, Zhang ZY, Jiang Y, Gao F, Zhou GH (2018) Effects of different selenium sources on growth performance, antioxidant capacity and meat quality of local Chinese Subei chickens. Biol Trace Elem Res 181:340–346

    CAS  PubMed  Google Scholar 

  71. Lianqin Z, Xiangdi T, Fenghua Z, Jinquan S, Zhipeng L (2007) Effect of dietary nano-CuO dosage on immune function in broiler. China Poult 29:20–23

    Google Scholar 

  72. Lien TF, Yeh HS, Lu FY, Fu M (2009) Nanoparticles of chromium picolinate enhance chromium digestibility and absorption. J Sci Food Agric 89:1164–1167

    CAS  Google Scholar 

  73. Lin X, Yang T, Li H, Ji Y, Zhao Y, He J (2019) Interactions between different selenium compounds and essential trace elements involved in the antioxidant system of laying hens. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01701-x

  74. Lotfi L, Zaghari M, Zeinoddini S, Shivazad M (2014) Comparison dietary nano and micro manganese on broilers performance. Proceedings of the 5th International Conference on Nanotechnology: Fundamentals and Applications 293

  75. Madden AS, Hochella MF (2005) A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles. Geochim Cosmochim Acta 69:389–398

    CAS  Google Scholar 

  76. Mannino S, Scampicchio M (2007) Nanotechnology and food quality control. Vet Res Commun 31:149–151

    PubMed  Google Scholar 

  77. Marchesini G, Fabbri A, Bianchi G, Brizi M, Zoli M (1996) Zinc supplementation and amino acid-nitrogen metabolism in patients with advanced cirrhosis. Hepatology 23:1084–1092

    CAS  PubMed  Google Scholar 

  78. McDowell LR (1992) Mineral in animal and human nutrition. Academic Press Inc, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto

    Google Scholar 

  79. Miroshnikov SA, Elena VY, Elena AS, Elena PM, Vladimir IL (2015) Comparative assessment of effect of copper nano- and microparticles in chicken. Orient J Chem 31:2327–2336

    CAS  Google Scholar 

  80. Miroshnikov SA, Yausheva EV, Sizova EA, Kosyan DB, Donnik IM (2017) Research of opportunities for using iron nanoparticles and amino acids in poultry nutrition. Intl J Geomate 13:124–131

    Google Scholar 

  81. Mishra A, Swain RK, Mishra SK, Panda N, Sethy K (2014) Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J Anim Nutr 31:384–388

    Google Scholar 

  82. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    CAS  PubMed  Google Scholar 

  83. Mohamed MA, Hassan HMA, Samy A, Abd-Elsamee MO, El-Sherbiny AE (2016) Carcass characteristics and bone measurements of broilers fed nano dicalcium phosphate containing diets. Asian J Anim Vet Adv 11:484–490

    CAS  Google Scholar 

  84. Mohammadi F, Ahmadi F, Amiri AM (2015a) Effect of zinc oxide nanoparticles on carcass parameters, relative weight of digestive and lymphoid organs of broiler fed wet diet during the starter period. Int J Biosci 6:389–394

    Google Scholar 

  85. Mohammadi V, Ghazanfari S, Mohammadi-Sangcheshmeh A, Nazaran MH (2015b) Comparative effects of zinc-nano complexes, zinc-sulphate and zinc methionine on performance in broiler chickens. Br Poult Sci 56:486–493

    CAS  PubMed  Google Scholar 

  86. Mohammadi H, Farzinpour A, Vaziry A (2017) Reproductive performance of breeder quails fed diets supplemented with L-cysteine-coated iron oxide nanoparticles. Reprod Domest Anim 52:298-304

  87. Mohapatra P, Swain RK, Mishra SK, Behera T, Swain P, Behura NC, Sahoo G, Sethy K, Bhol BP, Dhama K (2014) Effects of dietary nano-selenium supplementation on the performance of layer grower birds. Asian J Anim Vet Adv 9:641–652

    CAS  Google Scholar 

  88. Moos PJ, Olszewski K, Honeggar M (2011) Responses of human cells to ZnO nanoparticles: a gene transcription study. Metallomics 3:1199–1211

    CAS  PubMed  Google Scholar 

  89. Chegeni MM, Mottaghitalab M, Moghadam SHH, Golshekan M (2019) Effects of in ovo injection of different manganese sources on performance and tibia characteristics of broilers. Iran J Anim Sci 49:527–534

  90. Mroczek-Sosnowska N, Łukasiewicz M, Wnuk A, Sawosz E, Niemiec J (2014) Effect of copper nanoparticles and copper sulfate administered in ovo on copper content in breast muscle, liver and spleen of broiler chickens. Ann Warsaw Univ Life Sci SGGW Anim Sci 53:135–142

    CAS  Google Scholar 

  91. Mroczek-Sosnowska N, Batorska M, Lukasiewicz M, Wnuk A, Sawosz E, Jaworski S, Niemiec J (2013) Effect of nanoparticles of copper and copper sulfate administered in ovo on hematological and biochemical blood markers of broiler chickens. Ann Warsaw Univ Life Sci-SGGW Anim Sci 52:141–149

    CAS  Google Scholar 

  92. Mroczek-Sosnowska N, Sawosz E, Vadalasetty KP, Łukasiewicz M, Niemiec J, Wierzbicki M, Kutwin M, Jaworski S, Chwalibog A (2015) Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. Int J Mol Sci 16:4838–4849

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mroczek-Sosnowska N, Łukasiewicz M, Wnuk A, Sawosz E, Niemiec J, Skot A, Jaworski S, Chwalibog A (2016) In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance. J Sci Food Agric 96:3058–3062

    CAS  PubMed  Google Scholar 

  94. Mroczek-Sosnowska N, Łukasiewicz M, Adamek D, Kamaszewski M, Niemiec J, Wnuk-Gnich A, Scott A, Chwalibog A, Andsawosz E (2017) Effect of copper nanoparticles administered in ovo on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens. Arch Anim Nutr 71:327-332

    CAS  PubMed  Google Scholar 

  95. Na P, Fenghua Z, Youling W, Fu C, Caibing Z, Lianqin Z (2011) Effects of diets supplemented with nano-CuO and high level of zinc sulfate on copper and zinc contents of visceral tissues of chickens. Sci Agric Sin 44:4874–4881

    Google Scholar 

  96. Narayanan KB, Sakthive N (2010) Photosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater Charact 61:1232–1238

  97. Nikonova IN, Folmanisb YG, Folmanisb GE, Kovalenkob LV, Lapteva GY, Egorovc IA, Fisininc VI, Tananaev IG (2011) Iron nanoparticles as a food additive for poultry. Dokl Biol Sci 440:328–331

    Google Scholar 

  98. NRC (1994) Nutrient requirements of poultry, 9th Rev Ed National Academy of Sciences. National Research Council, Washington DC

    Google Scholar 

  99. O’Dell BL (1997) Mineral-ion interaction as assessed by bioavailability and ion channel function. In: O’Dell BL, Sunde RA (eds) Handbook of nutritionally essential mineral elements. Marcel Dekker, New York, pp 641–659

    Google Scholar 

  100. O’Hagan DT (1996) The intestinal uptake of particles and the implications for drug and antigen delivery. J Anat 189:477–482

    PubMed  PubMed Central  Google Scholar 

  101. Ognik K, Stępniowska A, Cholewińska E, Kozłowski K (2016) The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poult Sci 95:2045–2051

    CAS  PubMed  Google Scholar 

  102. Ognik K, Kozłowski K, Stępniowska A, Szlązak R (2018) The effect of manganese nanoparticles on performance, redox reactions and epigenetic changes in Turkey tissues. Animal 13:1137–1144

    PubMed  Google Scholar 

  103. Olgun O, Yildiz AO (2017) Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens. Ann Anim Sci 17:463–476

    CAS  Google Scholar 

  104. Park SY, Birkhold SG, Kubena LF, Nisbet DJ, Ricke SC (2004) Review on the role of dietary zinc in poultry nutrition, immunity, and reproduction. Biol Trace Elem Res 101:147–163

    CAS  PubMed  Google Scholar 

  105. Patel S, Jana S, Chetty R, Thakore S, Singh M, Devkar R (2017) Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo. Drug Chem Toxicol 42:1–8

    PubMed  Google Scholar 

  106. Patra AK, Amasheh S, Aschenbach JR (2018) Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds—a comprehensive review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/104083982018

  107. Philip D (2011) Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78:327–331

    PubMed  Google Scholar 

  108. Pineda L, Chwalibog A, Sawosz E, Llauridsen C, Engberg R, Elnif J, Hotowy A, Sawosz F, Gao Y, Ali A, Moghaddam HS (2012a) Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch Anim Nutr 66:416-429

    CAS  PubMed  Google Scholar 

  109. Pineda L, Sawosz E, Lauridsen C, Engberg RM, Elnif J, Hotowy A, Sawosz F, Chwalibog A (2012b) Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens. Open Access Anim Physiol 4:1–8

    CAS  Google Scholar 

  110. Pineda L, Sawosz E, Vadalasetty KP, Chwalibog A (2013) Effect of copper nanoparticles on metabolic rate and development of chicken embryos. Anim Feed Sci Technol 186:125–129

    CAS  Google Scholar 

  111. Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:J226–J233

    CAS  PubMed  Google Scholar 

  112. Qu W, Yang J, Sun Z, Zhang R, Zhou F, Zhang K, Xia Y, Huang K, Miao D (2017) Effect of selenium nanoparticles on anti-oxidative level, egg production and quality and blood parameter of laying hens exposed to deoxynivalenol. J Anim Res Nutr 21:1. https://doi.org/10.21767/2572-5459100021

    Article  Google Scholar 

  113. Rahmatollah DA, Farzinpour VA, Sadeghi G (2017) Effect of replacing dietary FeSO4 with cysteine-coated Fe3O4 nanoparticles on quails. Ital J Anim Sci 17:121–127

    Google Scholar 

  114. Rajendran D (2013) Application of nano minerals in animal production system. Res J Biotechnol 8:1–3

    CAS  Google Scholar 

  115. Ramesh J (2014) Effect of nanomineral supplementation. In TANUVAS Smart Mineral Mixture on the Performance of Lambs, Doctoral dissertation, Tamil Nadu Veterinary and Animal Sciences University, India

  116. Rehman H, Akram M, Kiyani MM, Yaseen T, Ghani A, Saggu JI, Shah SSH, Khalid ZM, Bokhari SAI (2019) Effect of endoxylanase and iron oxide nanoparticles on performance and histopathological features in broilers. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01737-z

  117. des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V (2006) Nanoparticles potential oral delivery systems of proteins vaccines: a mechanistic approach. J Control Release 116:1–27

    PubMed  Google Scholar 

  118. Ruenraroengsak P, Cook JM, Florence AT (2010) Nanosystem drug targeting: facing up to complex realities. J Control Release 141:265–276

    CAS  PubMed  Google Scholar 

  119. Safdari-Rostamabad M, Hosseini-Vashan SJ, Perai AH, Sarir H (2017) Nanoselenium supplementation of heat-stressed broilers: effects on performance, carcass characteristics, blood metabolites, immune response, antioxidant status, and jejunal morphology. Biol Trace Elem Res 178:105–116

    CAS  PubMed  Google Scholar 

  120. Saki AA, Abbasinezhad RAA (2014) Iron nanoparticles and methionine hydroxy analogue chelate in ovo feeding of broiler chickens. Int J Nanosci Nanotechnol 10:187–196

    Google Scholar 

  121. Saki AA, Salary J (2015) The impact of in ovo injection of silver nanoparticles, thyme and savory extracts in broiler breeder eggs on growth performance, lymphoid-organ weights, and blood and immune parameters of broiler chicks. Poult Sci J 3:165–172

    Google Scholar 

  122. Sandoval M, Henry PR, Ammerman CB, Miles RD, Littell RC (1997) Relative bioavailability of supplemental inorganic zinc sources for chicks. J Anim Sci 75:3195–3205

    CAS  PubMed  Google Scholar 

  123. Sawosz E, Binek M, Grodzik M, Zielinska M, Sysa P, Szmidt M, Niemiec T, Chwalibog A (2007) Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Anim Nutr 61:444–451

    CAS  PubMed  Google Scholar 

  124. Sawosz E, Łukasiewicz M, Łozicki A, Sosnowska M, Jaworski S, Niemiec J, Scott A, Jankowski J, Józefiak D, Chwalibog A (2018) Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Arch Anim Nutr 72:396-406

    CAS  PubMed  Google Scholar 

  125. Scott A, Vadalasetty KP, Sawosz E, Łukasiewicz M, Vadalasetty RKP, Jaworski S, Chwalibog A (2016) Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Anim Feed Sci Technol 220:151–158

    CAS  Google Scholar 

  126. Scrinis G, Lyons K (2007) The emerging nanocorporate paradigm: nanotechnology and the transformation of nature, food and agrifood system. Int J Sociol Agric Food 15:22–44

    Google Scholar 

  127. Sekhon BS (2010) Food nanotechnology—an overview. Nanotechnol Sci Appl 3:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Selle PH, Cowieson AJ, Ravindran V (2009) Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livst Sci 124:126–141

    Google Scholar 

  129. Sembratowicz I, Ognik K (2018) Evaluation of immunotropic activity of gold nanocolloid in chickens. J Trace Elem Med Biol 47:98–103

    CAS  PubMed  Google Scholar 

  130. Senthil Kumaran CK, Sugapriya S, Manivannan N, Shekar C (2015) Effect on the growth performance of broiler chickens by selenium nanoparticles supplementation. Nano Vision 5:161–168

    Google Scholar 

  131. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Shi L, Xun W, Yue W, Zhang C, Ren Y, Liu Q, Wang Q, Shi L (2011a) Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Anim Feed Sci Technol 163:136–142

    CAS  Google Scholar 

  133. Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, Wang Q, Yang R, Lei F (2011b) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin Res 96:49–52

    Google Scholar 

  134. Sindhura K, Selvam PP, Prasad TNV, Hussain OM (2014) Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl Nanosci 4:819–827

    Google Scholar 

  135. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599

    CAS  PubMed  Google Scholar 

  136. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Lett 7:219–242

    CAS  Google Scholar 

  137. Sirirat N, Lu JJ, Hung ATY, Chen SY, Lien TF (2012) Effects different levels of nanoparticles chromium picolinate supplementation on growth performance, mineral retention, and immune responses in broiler chickens. J Agric Sci 4:48–58

    Google Scholar 

  138. Sirirat N, Lu J, Hung T, Lien T (2013) Effect of different levels of nanoparticles chromium picolinate supplementation on performance, egg quality, mineral retention, and tissues minerals accumulation in layer chickens. J Agric Sci (Toronto) 5:150–159

    Google Scholar 

  139. Sizova EA, Miroshnikov SA, Lebedev SV, Кudasheva AV, Ryabov NI (2016) To the development of innovative mineral additives based on alloy of Fe and co antagonists as an example. Agric Biol 51:553–562

    Google Scholar 

  140. Sohair AA, El-Manylawi MA, Bakr M, Ali AA (2017) Use of nano-calcium and phosphors in broiler feeding. Egyptian Poult Sci J 37:637–650

    Google Scholar 

  141. Suttle NF (2010) The mineral nutrition of livestock 4th ed. CABI Publishing, Oxfordshire

    Google Scholar 

  142. Swain PS, Rajendran D, Rao SBN, Dominic G (2015) Preparation and effects of nano mineral particle feeding in livestock: a review. Vet World 8:888–891

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Szczepanowicz K, Stefanska J, Socha RP (2010) Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity. Physicochem Probl Mi 45:85–98

    CAS  Google Scholar 

  144. Szentkuti L (1997) Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of the rat distal colon. J Control Release 46:233–242

    CAS  Google Scholar 

  145. Thakkar KN, Mhatre SS, Parik RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    CAS  Google Scholar 

  146. Tiede K, Boxall ABA, Tear SP, Lewis J, Davis H, Hassellov M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:795–821

    CAS  PubMed  Google Scholar 

  147. Titma T, Shimmo R, Siigur J, Kahru A (2016) Toxicity of antimony, copper, cobalt, manganese, titanium and zinc oxide nanoparticles for the alveolar and intestinal epithelial barrier cells in vitro. Cytotechnology 68:2363–2377

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tsai YH, Mao SY, Li MZ, Huang JT, Lien TF (2016) Effects of nanosize zinc oxide on zinc retention, eggshell quality, immune response and serum parameters of aged laying hens. Anim Feed Sci Technol 213:99–107

    CAS  Google Scholar 

  149. Vadalasetty KPCL, Engberg RM, Vadalasetty R, Kutwin M, Chwalibog A, Sawosz E (2018) Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. Biomed Central Vet Res 14:1–11

    Google Scholar 

  150. Vijayakumar MP, Balakrishnan V (2014) Effect of calcium phosphate nanoparticles supplementation on growth performance of broiler chicken. Indian J Sci Technol 7:1149–1154

    Google Scholar 

  151. Vincent JB (1994) Relationship between glucose tolerance factor and low-molecular-weight chromium-binding substance. J Nutr 124:117–119

    CAS  PubMed  Google Scholar 

  152. Wang Y (2009) Differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase activity of avian broiler. Biol Trace Elem Res 128:184–190

    CAS  PubMed  Google Scholar 

  153. Wang MQ, Xu ZR (2004) Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs. Asian-Australas J Anim Sci 17:1118–1122

    CAS  Google Scholar 

  154. Wang MQ, Wang C, Li H, Du YJ, Tao WJ, Ye SS, He YD (2012) Effects of chromium-loaded chitosan nanoparticles on growth, blood metabolites, immune traits and tissue chromium in finishing pigs. Biol Trace Elem Res 149:197–203

    CAS  PubMed  Google Scholar 

  155. Wang MQ, Wang C, Du YJ, Li H, Tao WJ, Ye SS, He YD, Chen SY (2014) Effects of chromium-loaded chitosan nanoparticles on growth, carcass characteristics, pork quality, and lipid metabolism in finishing pigs. Livest Sci 161:123–129

    Google Scholar 

  156. Wang MJ, ChenHuang JT, Huang JW, Chen SE (2017) Evaluation of the toxicity of nano-calcium carbonates and their effects on anti-heat stress in laying hens. J Chin Soc Anim Sci 46:223–234

    Google Scholar 

  157. Waychunas GA (2001) Structure, aggregation and characterization of nanoparticles. Nanoparticles Environ 44:105–166

    CAS  Google Scholar 

  158. Xun W, Shi L, Yue W, Zhang C, Ren Y, Liu Q (2012) Effect of high-dose nano-selenium and selenium–yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Biol Trace Elem Res 150:130–136

    PubMed  Google Scholar 

  159. Yang J, Deivaraj TC, Too HP, Lee JY (2004) Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir 20:4241–4245

    CAS  PubMed  Google Scholar 

  160. Yausheva EV, Miroshnikov SA, Kosyan DB, Sizova EA (2016) Nanoparticles in combination with amino acids change productive and immunological indicators of broiler chicken. Agric Biol 51:912–920

    Google Scholar 

  161. Zha LY, Xu ZR, Wang MQ, Gu LY (2008) Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers. J Anim Physiol Anim Nutr 92:131–140

    CAS  Google Scholar 

  162. Zha LY, Zeng JW, Chu XW, Mao LM, Luo HJ (2009) Efficacy of trivalent chromium on growth performance, carcass characteristics and tissue chromium in heat-stressed broiler chicks. J Sci Food Agric 89:1782–1786

    CAS  Google Scholar 

  163. Zhao J, Shirley RB, Vazquez-Anon M, Dibner JJ, Richards JD, Fisher P, Hampton T, Christensen KD, Allard JP, Giesen AF (2010) Effects of chelated trace minerals on growth performance, breast meat yield and foot pad health in commercial meat broilers. J Appl Poult Res 19:365–372

    CAS  Google Scholar 

  164. Zhao CY, Tan SX, Xiao XY, Qiu XS, Pan JQ, Tang ZX (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res 160:361–367

    CAS  PubMed  Google Scholar 

  165. Zhou Y (2005) Recent advances in ionic liquids for synthesis of inorganic nano-materials. Curr Nanosci 1:35–42

    CAS  Google Scholar 

  166. Zhou X, Wang Y (2011) Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult Sci 90:680–686

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan Patra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, A., Lalhriatpuii, M. Progress and Prospect of Essential Mineral Nanoparticles in Poultry Nutrition and Feeding—a Review. Biol Trace Elem Res 197, 233–253 (2020). https://doi.org/10.1007/s12011-019-01959-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01959-1

Keywords

Navigation