Skip to main content
Log in

Role of Oxygen Free Radicals, Nitric Oxide and Mitochondria in Mediating Cardiac Alterations During Liver Cirrhosis Induced by Thioacetamide

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Thioacetamide (TAA) administration is widely used for induction of liver cirrhosis in rats, where reactive oxygen radicals (ROS) and nitric oxide (NO) participate in development of liver damage. Cardiac dysfunction is an important complication of liver cirrhosis, but the role of ROS or NO in cardiac abnormalities during liver cirrhosis is not well understood. This was investigated in animals after TAA-induced liver cirrhosis and temporal changes in oxidative stress, NO and mitochondrial function in the heart evaluated. TAA induced elevation in cardiac levels of nitrate before development of frank liver cirrhosis, without gross histological alterations. This was accompanied by an early induction of P38 MAP kinase, which is influenced by ROS and plays an important signaling role for induction of iNOS. Increased nitrotyrosine, protein oxidation and lipid peroxidation in the heart and cardiac mitochondria, suggestive of oxidative stress, also preceded frank liver cirrhosis. However, compromised cardiac mitochondrial function with a decrease in respiratory control ratio and increased mitochondrial swelling was seen later, when cirrhosis was evident. In conclusion, TAA induces elevations in ROS and NO in the heart in parallel to early liver damage. This leads to later development of functional deficits in cardiac mitochondria after development of liver cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, T., Shankar, K., Ronis, M. J., & Mehendale, H. M. (2000). Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. Journal of Pharmacology and Experimental Therapeutics, 294, 473–479.

    CAS  PubMed  Google Scholar 

  2. Ambrose, A. M., De, E. F., & Rather, L. J. (1949). Toxicity of thioacetamide in rats. The Journal of Industrial Hygiene and Toxicology, 31, 158–161.

    CAS  PubMed  Google Scholar 

  3. Fitzhugh, O. G., & Nelson, A. A. (1948). Liver tumors in rats fed thiourea or thioacetamide. Science, 108, 626–628.

    Article  CAS  PubMed  Google Scholar 

  4. Rather, L. J. (1951). Experimental alteration of nuclear and cytoplasmic components of the liver cell with thioacetamide. I. Early onset and reversibility of volume changes of the nucleolus, nucleus and cytoplasm. Bulletin of the Johns Hopkins Hospital, 88, 38–58.

    CAS  PubMed  Google Scholar 

  5. Al-Hamoudi, W. K. (2010). Cardiovascular changes in cirrhosis: Pathogenesis and clinical implications. Saudi Journal of Gastroenterology, 16, 145–153.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fattouh, A. M., El-Shabrawi, M. H., Mahmoud, E. H., & Ahmed, W. O. (2016). Evaluation of cardiac functions of cirrhotic children using serum brain natriuretic peptide and tissue Doppler imaging. Annals of Pediatric Cardiology, 9, 22–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Milic, S., Lulic, D., Stimac, D., Ruzic, A., & Zaputovic, L. (2016). Cardiac manifestations in alcoholic liver disease. Postgraduate Medical Journal, 92, 235–239.

    Article  PubMed  Google Scholar 

  8. Naschitz, J. E., Slobodin, G., Lewis, R. J., Zuckerman, E., & Yeshurun, D. (2000). Heart diseases affecting the liver and liver diseases affecting the heart. American Heart Journal, 140, 111–120.

    Article  CAS  PubMed  Google Scholar 

  9. Such, J., Frances, R., & Perez-Mateo, M. (2002). Nitric oxide in patients with cirrhosis and bacterial infections. Metabolic Brain Disease, 17, 303–309.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, H., Ma, Z., & Lee, S. S. (2000). Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology, 118, 937–944.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Estan, J., Ortiz, M. C., & Lee, S. S. (2002). Nitric oxide and renal and cardiac dysfunction in cirrhosis. Clinical Science (Lond), 102, 213–222.

    Article  CAS  Google Scholar 

  12. Sumida, Y., Niki, E., Naito, Y., & Yoshikawa, T. (2013). Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radical Research, 47, 869–880.

    Article  CAS  PubMed  Google Scholar 

  13. Ramachandran, A., Prabhu, R., Thomas, S., Reddy, J. B., Pulimood, A., & Balasubramanian, K. A. (2002). Intestinal mucosal alterations in experimental cirrhosis in the rat: Role of oxygen free radicals. Hepatology, 35, 622–629.

    Article  CAS  PubMed  Google Scholar 

  14. Natarajan, S. K., Ramamoorthy, P., Thomas, S., Basivireddy, J., Kang, G., Ramachandran, A., et al. (2006). Intestinal mucosal alterations in rats with carbon tetrachloride-induced cirrhosis: Changes in glycosylation and luminal bacteria. Hepatology, 43, 837–846.

    Article  CAS  PubMed  Google Scholar 

  15. Natarajan, S. K., Basivireddy, J., Ramachandran, A., Thomas, S., Ramamoorthy, P., Pulimood, A. B., et al. (2006). Renal damage in experimentally-induced cirrhosis in rats: Role of oxygen free radicals. Hepatology, 43, 1248–1256.

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Y. Y., Liu, H., Nam, S. W., Kunos, G., & Lee, S. S. (2010). Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: Interaction between TNFα and endocannabinoids. Journal of Hepatology, 53, 298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ljubuncic, P., Tanne, Z., & Bomzon, A. (2000). Evidence of a systemic phenomenon for oxidative stress in cholestatic liver disease. Gut, 47, 710–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hori, N., Okanoue, T., Sawa, Y., Mori, T., & Kashima, K. (1993). Hemodynamic characterization in experimental liver cirrhosis induced by thioacetamide administration. Digestive Diseases and Sciences, 38, 2195–2202.

    Article  CAS  PubMed  Google Scholar 

  19. Sastry, K. V., Moudgal, R. P., Mohan, J., Tyagi, J. S., & Rao, G. S. (2002). Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Analytical Biochemistry, 306, 79–82.

    Article  CAS  PubMed  Google Scholar 

  20. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.

    Article  CAS  PubMed  Google Scholar 

  21. Chan, H. W., & Levett, G. (1977). Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates. Lipids, 12, 99–104.

    Article  CAS  PubMed  Google Scholar 

  22. Sohal, R. S., Agarwal, S., Dubey, A., & Orr, W. C. (1993). Protein oxidative damage is associated with life expectancy of houseflies. Proceedings of the National Academy of Sciences USA, 90, 7255–7259.

    Article  CAS  Google Scholar 

  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  24. Takeyama, N., Matsuo, N., & Tanaka, T. (1993). Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner-membrane permeability transition. Biochemical Journal, 294(Pt 3), 719–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Madesh, M., & Balasubramanian, K. A. (1997). Nitric oxide inhibits enterocyte mitochondrial phospholipase D. FEBS Letters, 413, 269–272.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, T. C., Taher, M. M., Valerie, K. C., & Kukreja, R. C. (2001). p38 Triggers late preconditioning elicited by anisomycin in heart: Involvement of NF-κB and iNOS. Circulation Research, 89, 915–922.

    Article  CAS  PubMed  Google Scholar 

  27. Clerk, A., Fuller, S. J., Michael, A., & Sugden, P. H. (1998). Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. Journal of Biological Chemistry, 273, 7228–7234.

    Article  CAS  PubMed  Google Scholar 

  28. van Obbergh, L., Vallieres, Y., & Blaise, G. (1996). Cardiac modifications occurring in the ascitic rat with biliary cirrhosis are nitric oxide related. Journal of Hepatology, 24, 747–752.

    Article  PubMed  Google Scholar 

  29. Sarma, D., Hajovsky, H., Koen, Y. M., Galeva, N. A., Williams, T. D., Staudinger, J. L., & Hanzlik, R. P. (2012). Covalent modification of lipids and proteins in rat hepatocytes and in vitro by thioacetamide metabolites. Chemical Research in Toxicology, 25, 1868–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Metze, K., & Brandt, G. (1981). Copper and zinc content of liver, heart, skeletal muscle, and brain, in acute thioacetamide intoxication of rats. Hepato-Gastroenterology, 28, 99–101.

    CAS  PubMed  Google Scholar 

  31. Liao, P., Georgakopoulos, D., Kovacs, A., Zheng, M., Lerner, D., Pu, H., et al. (2001). The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proceedings of the National Academy of Sciences USA, 98, 12283–12288.

    Article  CAS  Google Scholar 

  32. Shimizu, M., Ogura, K., Mizoguchi, I., Chiba, Y., Higuchi, K., Ohtsuka, H., et al. (2012). IL-27 promotes nitric oxide production induced by LPS through STAT1, NF-κB and MAPKs. Immunobiology, 218, 628–634.

    Article  PubMed  Google Scholar 

  33. Shiva, S., Moellering, D., Ramachandran, A., Levonen, A. L., Landar, A., Venkatraman, A., et al. (2004). Redox signalling: From nitric oxide to oxidized lipids. Biochemical Society Symposia, 71, 107–120.

    Article  CAS  Google Scholar 

  34. Shafaroodi, H., Ebrahimi, F., Moezi, L., Hashemi, M., Doostar, Y., Ghasemi, M., & Dehpour, A. R. (2010). Cholestasis induces apoptosis in mice cardiac cells: The possible role of nitric oxide and oxidative stress. Liver International, 30, 898–905.

    Article  CAS  PubMed  Google Scholar 

  35. Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. American Journal of Physiology, 271, C1424–C1437.

    CAS  PubMed  Google Scholar 

  36. Mani, A. R., Ippolito, S., Ollosson, R., & Moore, K. P. (2006). Nitration of cardiac proteins is associated with abnormal cardiac chronotropic responses in rats with biliary cirrhosis. Hepatology, 43, 847–856.

    Article  CAS  PubMed  Google Scholar 

  37. Dai, D. F., Johnson, S. C., Villarin, J. J., Chin, M. T., Nieves-Cintron, M., Chen, T., et al. (2011). Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circulation Research, 108, 837–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Montaigne, D., Marechal, X., Coisne, A., Debry, N., Modine, T., Fayad, G., et al. (2014). Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation, 130, 554–564.

    Article  CAS  PubMed  Google Scholar 

  39. Sharov, V. G., Todor, A. V., Silverman, N., Goldstein, S., & Sabbah, H. N. (2000). Abnormal mitochondrial respiration in failed human myocardium. Journal of Molecular and Cellular Cardiology, 32, 2361–2367.

    Article  CAS  PubMed  Google Scholar 

  40. Pham, T., Loiselle, D., Power, A., & Hickey, A. J. (2014). Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. American Journal of Physiology: Cell Physiology, 307, C499–C507.

    Article  CAS  PubMed  Google Scholar 

  41. Lemasters, J. J., Theruvath, T. P., Zhong, Z., & Nieminen, A. L. (2009). Mitochondrial calcium and the permeability transition in cell death. Biochimica et Biophysica Acta, 1787, 1395–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kajander, O. A., Karhunen, P. J., & Jacobs, H. T. (2002). The relationship between somatic mtDNA rearrangements, human heart disease and aging. Human Molecular Genetics, 11, 317–324.

    Article  CAS  PubMed  Google Scholar 

  43. Zavodnik, I. B., Dremza, I. K., Cheshchevik, V. T., Lapshina, E. A., & Zamaraewa, M. (2013). Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca2+ ions in oxidative processes. Life Sciences, 92, 1110–1117.

    Article  CAS  PubMed  Google Scholar 

  44. Murphy, M. P., Echtay, K. S., Blaikie, F. H., Asin-Cayuela, J., Cocheme, H. M., Green, K., et al. (2003). Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: Studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. Journal of Biological Chemistry, 278, 48534–48545.

    Article  CAS  PubMed  Google Scholar 

  45. Ide, T., Tsutsui, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research, 88, 529–535.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

G. J. A. was funded by a Senior Research Fellowship from the Council of Scientific and Industrial Research, Government of India. Funding from the Department of Biotechnology, Government of India, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirtharaj, G.J., Natarajan, S.K., Pulimood, A. et al. Role of Oxygen Free Radicals, Nitric Oxide and Mitochondria in Mediating Cardiac Alterations During Liver Cirrhosis Induced by Thioacetamide. Cardiovasc Toxicol 17, 175–184 (2017). https://doi.org/10.1007/s12012-016-9371-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-016-9371-1

Keywords

Navigation