Skip to main content

Advertisement

Log in

Exposing cultured mouse ovarian follicles under increased gonadotropin tonus to aromatizable androgens influences the steroid balance and reduces oocyte meiotic capacity

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Acquisition of oocyte developmental competence relies on the well-controlled events accompanying antral follicular development. Elevated basal androgen levels, as in PCOS, potentially affect oocyte quality. Current experiments in an in vitro follicle bioassay studied dose-effects of androstenedione and testosterone on FSH and hCG stimulated antral follicle growth and meiotic maturation. The addition of either androgens altered follicle’s endogenous production of androstenedione, testosterone, estradiol, and progesterone and affected the oocyte’s capacity to resume meiosis. Exposure to 200 nM androstenedione induced an increased production of testosterone and estradiol. Exposure to a concentration of ≥200 nM testosterone induced elevated levels of estradiol and progesterone. Significant dose-dependent negative effects on polar body extrusion were seen at concentrations of ≥200 nM of either androgen. In addition, chromosome displacement on the metaphase plate was observed in oocytes obtained from androstenedione-treated follicles. Follicles exposed to a combination of 25 mIU/ml FSH and 3 mIU/ml hCG and elevated aromatizable androgens altered the steroid production profile, affected the follicular development and impaired oocyte meiotic competence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Uehara, T. Naganuma, A. Tsuiki, K. Kyono, H. Hoshiai, M. Suzuki, Obstet. Gynecol. 66, 19–23 (1985)

    CAS  PubMed  Google Scholar 

  2. A. Revelli, L. Delle Piane, S. Casano, E. Molinari, M. Massobrio, P. Rinaudo, Reprod. Biol. Endocrinol. 7, 40 (2009)

    Article  PubMed  Google Scholar 

  3. M. Tulppala, U.H. Stenman, B. Cacciatore, O. Ylikorkala, Br. J. Obstet. Gynaecol. 100, 348–352 (1993)

    CAS  PubMed  Google Scholar 

  4. A.A. Murray, R.G. Gosden, V. Allison, N. Spears, J. Reprod. Fertil. 113, 27–33 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. N. Spears, A.A. Murray, V. Allison, N.I. Boland, R.G. Gosden, J. Reprod. Fertil. 113, 19–26 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. K.A. Vendola, J. Zhou, O.O. Adesanya, S.J. Weil, C.A. Bondy, J. Clin. Investig. 101, 2622–2629 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. S. Weil, K. Vendola, J. Zhou, C.A. Bondy, J. Clin. Endocrinol. Metab. 84, 2951–2956 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. C.Y. Andersen, S. Ziebe, Hum. Reprod. 7, 1365–1370 (1992)

    CAS  PubMed  Google Scholar 

  9. C.Y. Andersen, J. Clin. Endocrinol. Metab. 77, 1227–1234 (1993)

    Article  CAS  PubMed  Google Scholar 

  10. M. Tetsuka, S.G. Hillier, Endocrinology 137, 4392–4397 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. M. Tetsuka, S.G. Hillier, J. Steroid Biochem. Mol. 61, 3–6 (1997)

    Google Scholar 

  12. Y. Hu, P. Wang, S. Yeh, R. Wang, C. Xie, Q. Xu et al., Proc. Natl. Acad. Sci. USA 101, 11209–11214 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. J. Couse, M. Yates, J. Bonnie, K. Korach, Endocrinology 146, 3247–3262 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. M.P. Teissier, H. Chable, S. Paulhac, Y. Aubard, Hum. Reprod. 15, 2471–2477 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. L. Costa, M. Mendes, R. Ferriani, M. Moura, R. Reis, M. Silva de Sá, Braz. J. Med. Biol. Res. 37(11), 1747–1755 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. K. McNatty, D. Moore Smith, A. Makris, R. Osathanondh, K. Ryan, J. Clin. Endocrinol. Metab. 49(6), 851–860 (1979)

    Article  CAS  PubMed  Google Scholar 

  17. C. Slater, L. Chang, F. Stanczyk, R. Paulson, J. Assist. Reprod. Genet. 18, 527–533 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. J. Wood, D. Dumesic, D. Abbott, J. Strauss, J. Clin. Endocrinol. Metab. 92, 705–713 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. B. Sahu, O. Ozturk, M. Ranierri, P. Serhal, Arch. Gynecol. Obstet. 277, 239–244 (2008)

    Article  PubMed  Google Scholar 

  20. D.A. Dumesic, D.H. Abbott, Semin. Reprod. Med. 26, 53–61 (2008)

    Article  PubMed  Google Scholar 

  21. R. Homburg, N.A. Armar, A. Eshel, J. Adams, H.S. Jacobs, BMJ 297, 1024–1026 (1988)

    Article  CAS  PubMed  Google Scholar 

  22. R. Homburg, Best Pract. Res. Clin. Endocrinol. Metab. 20, 281–292 (2006)

    Article  PubMed  Google Scholar 

  23. M. Bley, P. Saragüeta, J. Barañao, J. Steroid Biochem. Mol. Biol. 62, 11–19 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. T. Hickey, D. Marrocco, R. Gilchrist, R. Norman, D. Armstrong, Biol. Reprod. 71, 45–52 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. A. Gill, M. Jamnongjit, S.R. Hammes, Mol. Endocrinol. 18(1), 97–104 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. M. Jamnongjit, A. Gill, S.R. Hammes, Proc. Natl. Acad. Sci. USA 102(45), 16257–16262 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. M. Li, J.S. Ai, B.Z. Xu, B. Xiong, S. Yin, S.L. Lin, Y. Hou, D.Y. Chen, H. Schatten, Q.Y. Sun, Biol. Reprod. 79(5), 897–905 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. H. Shiina, T. Matsumoto, T. Sato, K. Igarashi, J. Miyamoto, S. Takemasa et al., Proc. Natl. Acad. Sci. USA 103, 224–229 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. K. Singh, Fertil. Steril. 84(2), 1228–1234 (2005)

    Article  PubMed  Google Scholar 

  30. R. Cortvrindt, J. Smitz, Hum. Reprod. 8, 243–254 (2002)

    Article  CAS  Google Scholar 

  31. N. Macklon, R. Stouffer, L. Giudice, B. Fauser, Endocr. Rev. 27, 170–207 (2006)

    Article  PubMed  Google Scholar 

  32. C. Anderiesz, A. Trounson, Hum. Reprod. 10, 2377–2381 (1995)

    CAS  PubMed  Google Scholar 

  33. G. Almahbobi, A. Nagodavithane, A. Trounson, Hum. Reprod. 10, 2767–2772 (1995)

    CAS  PubMed  Google Scholar 

  34. J. Chang, Nat. Clin. Pract. Endocrinol. Metab. 3, 688–695 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. S. Weil, K. Vendola, J. Zhou, O. Adesanya, J. Wang, J. Okafor et al., J. Clin. Endocrinol. Metab. 83, 2479–2485 (1998)

    Article  CAS  PubMed  Google Scholar 

  36. S. Catteau-Jonard, S. Jamin, A. Leclerc, J. Gonzalès, D. Dewailly, N. di Clemente, J. Clin. Endocrinol. Metab. 93, 4456–4461 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. C. Wolfenson, J. Groisman, A.S. Couto, M. Hedenfalk, R.G. Cortvrindt, J.E. Smitz et al., Reprod. Biomed. 10, 442–454 (2005)

    Article  CAS  Google Scholar 

  38. M. Rodgers, R. Mitchell, A. Lambert, N. Peers, W. Robertson, Clin. Endocrinol. 37, 558–564 (1992)

    Article  CAS  Google Scholar 

  39. T. Hickey, D. Marrocco, F. Amato, L. Ritter, R. Norman, R. Gilchrist et al., Biol. Reprod. 73, 825–832 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. S. Lenie, R. Cortvrindt, U. Eichenlaub-Ritter, J. Smitz, Mutat. Res. 651(1–2), 71–81 (2008)

    CAS  PubMed  Google Scholar 

  41. I. Segers, T. Adriaenssens, W. Coucke, R. Cortvrindt, J. Smitz, Biol. Reprod. 78(5), 859–868 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. M. Hamel, J. Vanselow, E. Nicola, C. Price, Mol. Reprod. Dev. 70, 175–183 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. M. Shemesh, M. Ailenberg, Biol. Reprod. 17, 499–505 (1977)

    Article  CAS  PubMed  Google Scholar 

  44. H. Shaw, S. Hillier, J. Hodges, Endocrinology 124, 1669–1677 (1989)

    Article  CAS  PubMed  Google Scholar 

  45. P. Kemeter, H. Salzer, G. Breitenecker, F. Friedrich, Acta Endocrinol. 80, 686–704 (1975)

    CAS  PubMed  Google Scholar 

  46. R.S. Carson, J.K. Findlay, I.J. Clarke, H.G. Burger, Biol. Reprod. 24(1), 105–113 (1981)

    Article  CAS  PubMed  Google Scholar 

  47. H. Cárdenas, W.F. Pope, J. Anim. Sci. 72(11), 2930–2935 (1994)

    PubMed  Google Scholar 

  48. J. Smitz, A.N. Andersen, P. Devroey, J.-C. Arce, Hum. Reprod. 22, 676–687 (2007)

    Article  CAS  PubMed  Google Scholar 

  49. I. Segers, T. Adriaenssens, E. Ozturk, J. Smitz, Fertil. Steril. 93(8), 2695–2700 (2009)

    Article  Google Scholar 

  50. V. Parfenov, G. Potchukalina, L. Dudina, D. Kostyuchek, M. Gruzova, Gamete Res. 22, 219–231 (1989)

    Article  CAS  PubMed  Google Scholar 

  51. I. Adriaens, R. Cortvrindt, J. Smitz, Hum. Reprod. 19, 398–408 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the helpful technical assistance of Ann Gerard and Johan Schiettecatte with the immunoassays. Our thanks also to Claudia Rodríguez for processing the oocytes for chromosomal analysis, Sandra De Schaepdryver for editorial support and Michael Whitburn of the VUB language center for proofreading the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, S., Smitz, J. Exposing cultured mouse ovarian follicles under increased gonadotropin tonus to aromatizable androgens influences the steroid balance and reduces oocyte meiotic capacity. Endocr 38, 243–253 (2010). https://doi.org/10.1007/s12020-010-9380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-010-9380-y

Keywords

Navigation