Skip to main content
Log in

Contribution of Serotonergic Transmission to the Motor and Cognitive Effects of High-Frequency Stimulation of the Subthalamic Nucleus or Levodopa in Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although they are effective at treating the motor impairments that are the core symptoms of Parkinson’s disease, current treatments, namely l-3,4-dihydroxyphenylalanine (l-DOPA), the gold standard medication and high-frequency stimulation of the subthalamic nucleus (HFS-STN), can lead to cognitive and mood alterations. Many of these side effects, such as depression, anxiety and sleep disturbances, could be related to abnormal functioning of the serotonergic system, but much basic research remains to be done. Molecular studies in humans and animal models of the disease have reported diverse drastic changes to the serotonergic system. It has also been shown that the serotonergic system both plays a major role in the mechanism of action of the current therapies and is altered by the therapies. It has been reported that HFS-STN decreases serotonin release in several regions, mostly via inhibition of serotonergic neuron activity. The involvement of serotonergic neurons in l-DOPA treatment is even more significant. First, serotonergic neurons, able to convert exogenous l-DOPA to dopamine, are a major site to release dopamine throughout the brain. Second, the substitution of serotonin by newly synthesized dopamine in serotonin neurons leads to acute and chronic alteration of serotonin release and metabolism. Therefore, both therapeutic approaches, via distinct mechanisms, decrease serotonergic system activity and, rather than alleviating cognitive or mood disorders, tend to aggravate them. Molecular strategies targeting the serotonergic system are being developed and could be decisive in limiting l-DOPA-induced dyskinesia, as well as mood and cognitive symptoms produced by antiparkinsonian therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Melamed E, Zoldan J, Friedberg G, Ziv I, Weizmann A (1996) Involvement of serotonin in clinical features of Parkinson’s disease and complications of L-DOPA therapy. Adv Neurol 69:545–550

    PubMed  CAS  Google Scholar 

  2. McDonald WM, Richard IH, DeLong MR (2003) Prevalence, etiology, and treatment of depression in Parkinson’s disease. Biol Psychiatry 54:363–375

    Article  PubMed  Google Scholar 

  3. Tandberg E, Larsen JP, Aarsland D, Cummings JL (1996) The occurrence of depression in Parkinson’s disease. A community-based study. Arch Neurol 53:175–179

    Article  PubMed  CAS  Google Scholar 

  4. Schuurman AG, van den Akker M, Ensinck KT, Metsemakers JF, Knottnerus JA, Leentjens AF, Buntinx F (2002) Increased risk of Parkinson’s disease after depression: a retrospective cohort study. Neurology 58:1501–1504

    PubMed  CAS  Google Scholar 

  5. Shiba M, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, Schaid DJ, Rocca WA (2000) Anxiety disorders and depressive disorders preceding Parkinson’s disease: a case–control study. Mov Disord 15:669–677

    Article  PubMed  CAS  Google Scholar 

  6. Eskow Jaunajars KL, Angoa-Perez M, Kuhn DM, Bishop C (2011) Potential mechanisms underlying anxiety and depression in Parkinson’s disease: consequences of L-DOPA treatment. Neurosci Biobehav Rev 35:556–564

    Article  CAS  Google Scholar 

  7. Steinbusch HW (1984) Serotonin-immunoreactive neurons and their projections in the CNS. In: Björklund A, Hökfelt T, Kuhar MJ (eds) Handbook of chemical neuroanatomy—classical transmitters and transmitters receptors in the CNS Part II. Elsevier, Amsterdam, pp 68–125

    Google Scholar 

  8. Kish SJ (2003) Biochemistry of Parkinson’s disease: is a brain serotonergic deficiency a characteristic of idiopathic Parkinson’s disease? Adv Neurol 91:39–49

    PubMed  CAS  Google Scholar 

  9. Scholtissen B, Verhey FR, Steinbusch HW, Leentjens AF (2006) Serotonergic mechanisms in Parkinson’s disease: opposing results from preclinical and clinical data. J Neural Transm 113:59–73

    Article  PubMed  CAS  Google Scholar 

  10. Birkmayer W, Birkmayer JD (1987) Dopamine action and disorders of neurotransmitter balance. Gerontology 33:168–171

    Article  PubMed  CAS  Google Scholar 

  11. Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131

    PubMed  Google Scholar 

  12. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275:321–328

    Article  PubMed  CAS  Google Scholar 

  13. Kerenyi L, Ricaurte GA, Schretlen DJ, McCann U, Varga J, Mathews WB, Ravert HT, Dannals RF, Hilton J, Wong DF, Szabo Z (2003) Positron emission tomography of striatal serotonin transporters in Parkinson disease. Arch Neurol 60:1123–1129

    Article  Google Scholar 

  14. Politis M, Wu K, Loane C, Kiferle L, Molloy S, Brooks DJ, Piccini P (2010) Staging of serotonergic dysfunction in Parkinson’s disease: an in vivo 11C-DASB PET study. Neurobiol Dis 40:216–221

    Article  PubMed  CAS  Google Scholar 

  15. Caretti V, Stoffers D, Winogrodzka A et al (2008) (2008) Loss of thalamic serotonin transporters in early drug-naïve Parkinson’s disease patients is associated with tremor: an [(123)I]beta-CIT SPECT study. J Neural Transm 115:721–729

    Article  PubMed  CAS  Google Scholar 

  16. Roselli F, Pisciotta NM, Pennelli M, Aniello MS, Gigante A, De Caro MF, Ferrannini E, Tartaglione B, Niccoli-Asabella A, Defazio G, Livrea P, Rubini G (2010) Midbrain SERT in degenerative parkinsonisms: a 123I-FP-CIT SPECT study. Mov Disord 25:1853–1859

    Article  PubMed  Google Scholar 

  17. Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ (2003) Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology 60:601–605

    PubMed  CAS  Google Scholar 

  18. Halliday GM, Blumbergs PC, Cotton RG, Blessing WW, Geffen LB (1990) Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res 510:104–107

    Article  PubMed  CAS  Google Scholar 

  19. Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14:153–197

    Article  PubMed  CAS  Google Scholar 

  20. Kovacs GG, Klöppel S, Fischer I, Dorner S, Lindeck-Pozza E, Birner P, Bötefür IC, Pilz P, Volk B, Budka H (2003) Nucleus-specific alteration of raphe neurons in human neurodegenerative disorders. Neuroreport 14:73–76

    Article  PubMed  CAS  Google Scholar 

  21. Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behaviour in rats after 6-hydroxy-dopamine lesion of the nigrostriatal dopamine system. Brain Res 24:485–493

    Article  PubMed  CAS  Google Scholar 

  22. Henry B, Crossman AR, Brotchie JM (1998) Characterization of enhanced behavioural responses to L-DOPA following repeated administration in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Exp Neurol 151:334–342

    Article  PubMed  CAS  Google Scholar 

  23. Ungerstedt U (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand Suppl 367:49–68

    PubMed  CAS  Google Scholar 

  24. Zetterstrom T, Herrera-Marschitz M, Ungerstedt U (1986) Simultaneous measurement of dopamine release and rotational behaviour in the 6-hydroxydopamine denervated rats using intracerebral dialysis. Brain Res 376:1–7

    Article  PubMed  CAS  Google Scholar 

  25. Herrera-Marschitz M, Arbuthnott G, Ungerstedt U (2010) The rotational model and microdialysis: significance for dopamine signalling, clinical studies and beyond. Prog Neurobiol 90:176–189

    Article  PubMed  CAS  Google Scholar 

  26. Pearce RK, Jackson M, Smith L, Jenner P, Marsden CD (1995) Chronic L-DOPA administration induces dyskinesias in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix Jacchus). Mov Disord 10:731–740

    Article  PubMed  CAS  Google Scholar 

  27. Cenci MA, Ohlin KE (2009) Rodent models of treatment-induced motor complications in Parkinson’s disease. Parkinsonism Relat Disord 15:S13–S17

    Article  PubMed  Google Scholar 

  28. Olanow CW, Obeso JA (2000) Preventing levodopa-induced dyskinesias. Ann Neurol 47(Suppl 1):S167–S176

    PubMed  CAS  Google Scholar 

  29. de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747–2754

    Article  PubMed  Google Scholar 

  30. Cenci MA, Lundblad M (2006) Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem 99:381–392

    Article  PubMed  CAS  Google Scholar 

  31. Cenci MA (2007) L-DOPA-induced dyskinesia: cellular mechanisms and approaches to treatment. Parkinsonism Relat Disord 13:S263–S267

    Article  PubMed  Google Scholar 

  32. Perez-Otano I, Herrero MT, Oset C, De Ceballos ML, Luguin MR, Obseo JA, Del Rio J (1991) Extensive loss of dopamine and serotonin induced by chronic administration of MPTP in the marmoset. Brain Res 567:127–132

    Article  PubMed  CAS  Google Scholar 

  33. Pifl C, Schingnitz G, Hornykiewicz O (1991) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neuroscience 44:591–605

    Article  PubMed  CAS  Google Scholar 

  34. Russ H, Mihatsch W, Gerlach M, Riederer P, Przuntek H (1991) Neurochemical and behavioural features induced by chronic low dose treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset: implications for Parkinson’s disease? Neurosci Lett 123:115–118

    Article  PubMed  CAS  Google Scholar 

  35. Boulet S, Mounayar S, Poupard A et al (2008) Behavioral recovery in MPTP-treated monkeys: neurochemical mechanisms studied by intrastriatal microdialysis. J Neurosci 28:9575–9584

    Article  PubMed  CAS  Google Scholar 

  36. Hara K, Tohyama I, Kimura H, Fukuda H, Nakamura S, Kameyama M (1987) Reversible serotoninergic neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mouse striatum studied by neurochemical and immunohistochemical approaches. Brain Res 410:371–374

    Article  PubMed  CAS  Google Scholar 

  37. Nayyar T, Bubser M, Ferguson MC, Neely MD, Shawn Goodwin J, Montine TJ, Deutch AY, Ansah TA (2009) Cortical serotonin and norepinephrine denervation in parkinsonism: preferential loss of beaded serotonin innervation. Eur J Neurosci 30:207–216

    Article  PubMed  Google Scholar 

  38. Rousselet E, Joubert C, Callebert J, Parain K, Tremblay L, Orieux G, Launay JM, Cohen-Salmon C, Hirsch EC (2003) Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiol Dis 14:218–228

    Article  PubMed  CAS  Google Scholar 

  39. Vuckovic MG, Wood RI, Holschneider DP, Abernathy A, Togasaki DM, Smith A, Petzinger GM, Jakowec MW (2008) Memory, mood, dopamine, and serotonin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Neurobiol Dis 32:319–327

    Article  PubMed  CAS  Google Scholar 

  40. Rozas G, Liste I, Guerra MJ, Labandeira-Garcia JL (1998) Sprouting of the serotonergic afferents into striatum after selective lesion of the dopaminergic system by MPTP in adult mice. Neurosci Lett 245:151–154

    Article  PubMed  CAS  Google Scholar 

  41. Breese GR, Baumeister AA, McCown TJ, Emerick SG, Frye GD, Crotty K, Muller RA (1984) Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine. J Pharmacol Exp Ther 231:343–354

    PubMed  CAS  Google Scholar 

  42. Erinoff L, Snodgrass SR (1986) Effects of adult or neonatal treatment with 6-hydroxydopamine or 5,7-dihydroxytryptamine on locomotor activity, monoamine levels, and response to caffeine. Pharmacol Biochem Behav 24:1039–1045

    Article  PubMed  CAS  Google Scholar 

  43. Iwamoto ET, Loh HH, Way EL (1976) Circling behavior in rats with 6-hydroxydopamine or electrolytic nigral lesions. Eur J Pharmacol 37:339–356

    Article  PubMed  CAS  Google Scholar 

  44. Zhou FC, Bledsoe S, Murphy J (1991) Serotonergic sprouting is induced by dopamine-lesion in substantia nigra of adult rat brain. Brain Res 556:108–116

    Article  PubMed  CAS  Google Scholar 

  45. Commins DL, Shaughnessy RA, Axt KJ, Vosmer G, Seiden LS (1989) Variability among brain regions in the specificity of 6-hydroxydopamine (6-OHDA)-induced lesions. J Neural Transm 77:197–210

    Article  PubMed  CAS  Google Scholar 

  46. Kaya AH, Vlamings R, Tan S, Lim LW, Magill PJ, Steinbusch HW, Visser-vanderwalle V, Sharp T, Temel Y (2008) Increased electrical and metabolic activity in the dorsal raphe nucleus of parkinsonian rats. Brain Res 1221:93–97

    Article  PubMed  CAS  Google Scholar 

  47. Temel Y, Boothman LJ, Blokland A, Magill PJ, Steinbusch HW, Visser-Vandewalle V, Sharp T (2007) Inhibition of 5-HT neuron activity and induction of depressive-like behavior by high-frequency stimulation of the subthalamic nucleus. Proc Natl Acad Sci U S A 104:17087–17092

    Article  PubMed  CAS  Google Scholar 

  48. Wang S, Zhang GJ, Liu J, Wu ZH, Wang T, Gui ZH, Chen L, Wang Y (2009) Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal firing of the midbrain raphe nuclei 5-HT neurons and a decrease of their response to 5-HT(1A) receptor stimulation in the rat. Neuroscience 159:850–861

    Article  PubMed  CAS  Google Scholar 

  49. Wang S, Zhang GJ, Liu J, Wu ZH, Ali U, Wang Y, Chen L, Gui ZH (2009) The firing of pyramidal neurons in medial prefrontal cortex and their response to 5-hydroxytryptamine-1A receptor stimulation in a rat model of Parkinson’s disease. Neuroscience 162:1091–1100

    Article  PubMed  CAS  Google Scholar 

  50. Wang S, Zhang QJ, Liu J, Ali U, Wu ZH, Chen L, Gui ZH, Wang Y, Hui YP (2009) In vivo effects of activation and blockade of 5-HT(2A/2C) receptors in the firing activity of pyramidal neurons of medial prefrontal cortex in a rodent model of Parkinson’s disease. Exp Neurol 219:239–248

    Article  PubMed  CAS  Google Scholar 

  51. Takeuchi Y, Sawada T, Blunt S, Jenner P, Marsden CD (1991) Serotonergic sprouting in the neostriatum after intrastriatal transplantation of fetal ventral mesencephalon. Brain Res 551:171–177

    Article  PubMed  CAS  Google Scholar 

  52. Guiard BP, El Mansari M, Merali Z, Blier P (2008) Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol 11:625–639

    PubMed  CAS  Google Scholar 

  53. Bejjani BP, Damier P, Arnulf I et al (1999) Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 340:1476–1480

    Article  PubMed  CAS  Google Scholar 

  54. Deuschl G, Fogel W, Hahne M et al (2002) Deep-brain stimulation for Parkinson’s disease. J Neurol 249(suppl 3):36–39

    Google Scholar 

  55. Houeto JL, Damier P, Bejjani PB et al (2000) Subthalamic stimulation in Parkinson disease. Arch Neurol 57:461–465

    Article  PubMed  CAS  Google Scholar 

  56. Tan SK, Hartung H, Visser-Vandewalle V, Steinbusch HW, Temel Y, Sharp T (2011) A combined in vivo neurochemical and electrophysiological analysis of the effect of high-frequency stimulation of the subthalamic nucleus on 5-HT transmission. Exp Neurol. doi:10.1016/j.expneurol.2011.08.027

  57. Thobois S, Mertens P, Guenot M et al (2002) Subthalamic nucleus stimulation in Parkinson’s disease. J Neurol 249:529–534

    Article  PubMed  CAS  Google Scholar 

  58. Kulisevsky J, Berthier ML, Gironell A et al (2002) Mania following deep brain stimulation for Parkinson’s disease. Neurology 59:1421–1424

    PubMed  CAS  Google Scholar 

  59. Doshi PK, Chaya N, Bhatt MH (2002) Depression leading to attempted suicide after subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord 17:1084–1100

    Article  PubMed  Google Scholar 

  60. Houeto JL, Mesnage V, Mallet L et al (2002) Behavioral disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry 72:701–707

    Article  PubMed  CAS  Google Scholar 

  61. Saint-Cyr JA, Trépanier LL, Kumar R et al (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123:2091–2108

    Article  PubMed  Google Scholar 

  62. Navailles S, Benazzouz A, Bioulac B, Gross C, De Deurwaerdère P (2010) High-frequency stimulation of the subthalamic nucleus and L-3,4-dihydroxyphenylalanine inhibit in vivo serotonin release in the prefrontal cortex and hippocampus in a rat model of Parkinson’s disease. J Neurosci 30:2356–2364

    Article  PubMed  CAS  Google Scholar 

  63. Tan SK, Janssen ML, Jahanshahi A, Chouliaras L, Visser-Vandewalle V, Lim LW, Steinbusch HW, Sharp T, Temel Y (2011) High frequency stimulation of the subthalamic nucleus increases c-fos immunoreactivity in the dorsal raphe nucleus and afferent brain regions. J Psychiatr Res 45:1307–1315

    Article  PubMed  Google Scholar 

  64. Amilhon B, Lepicard E, Renoir T, Mongeau R, Popa D, Poirel O, Miot S, Gras C, Gardier AM, Gallego J, Hamon M, Lanfumey L, Gasnier B, Giros B, El Mestikawy S (2010) VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J Neurosci 30:2198–2210

    Article  PubMed  CAS  Google Scholar 

  65. Hale MW, Lowry CA (2011) Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits. Psychopharmacology (Berl) 213:243–264

    Article  CAS  Google Scholar 

  66. Kiyasova V, Fernandez SP, Laine J, Stankovski L, Muzerelle A, Doly S, Gaspar P (2011) A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei. J Neurosci 31:2756–2768

    Article  PubMed  CAS  Google Scholar 

  67. McQuade R, Sharp T (1997) Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. J Neurochem 69:791–796

    Article  PubMed  CAS  Google Scholar 

  68. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359

    Article  PubMed  CAS  Google Scholar 

  69. Sesia T, Bulthuis V, Tan S, Lim LW, Vlamings R, Blokland A, Steinbusch HW, Sharp T, Visser-Vandewalle V, Temel Y (2010) Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin. Exp Neurol 225:302–309

    Article  PubMed  CAS  Google Scholar 

  70. Hartung H, Tan SK, Steinbusch HM, Temel Y, Sharp T (2011) High-frequency stimulation of the subthalamic nucleus inhibits the firing of juxtacellular labelled 5-HT-containing neurones. Neuroscience 186:135–145

    Article  PubMed  CAS  Google Scholar 

  71. Cotzias GC (1968) L-Dopa for Parkinsonism. N Engl J Med 278:630

    PubMed  CAS  Google Scholar 

  72. Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18:925–964

    PubMed  CAS  Google Scholar 

  73. Miller DW, Abercrombie ED (1999) Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous L-DOPA: studies in intact and 6-hydroxydopamine-treated rats. J Neurochem 72:1516–1522

    Article  PubMed  CAS  Google Scholar 

  74. Sarre S, De Klippel N, Herregodts P, Ebinger G, Michotte Y (1994) Biotransformation of locally L-dopa in the corpus striatum of the hemi-parkinsonian rats studies with microdialysis. Naunyn Schmiedebergs Arch Pharmacol 350:15–21

    Article  PubMed  CAS  Google Scholar 

  75. Bunney BS, Aghajanian GK, Roth RH (1973) Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurons. Nat New Biol 245:123–125

    PubMed  CAS  Google Scholar 

  76. Mercuri NB, Calabresi P, Bernardi G (1990) Responses of rat substantia nigra compacta neurones to L-DOPA. Br J Pharmacol 100:257–260

    PubMed  CAS  Google Scholar 

  77. Harden DG, Grace AA (1995) Activation of dopamine cell firing by repeated L-DOPA administration to dopamine-depleted rats: its potential role in mediating the therapeutic response to L-DOPA treatment. J Neurosci 15:6157–6166

    PubMed  CAS  Google Scholar 

  78. Maeda T, Kannari K, Suda T, Matsunaga M (1999) Loss of regulation by presynaptic dopamine D2 receptors of exogenous L-DOPA-derived dopamine release in the dopaminergic denervated striatum. Brain Res 817:185–191

    Article  PubMed  CAS  Google Scholar 

  79. Lloyd K, Hornykiewicz O (1970) Parkinson’s disease: activity of L-dopa decarboxylase in discrete brain regions. Science 170:1212–1213

    Article  PubMed  CAS  Google Scholar 

  80. Kannari K, Tanaka H, Maeda T, Tomiyama M, Suda T, Matsunaga M (2000) Reserpine pretreatment prevents increases in extracellular striatal dopamine following L-DOPA administration in rats with nigrostriatal denervation. J Neurochem 74:263–269

    Article  PubMed  CAS  Google Scholar 

  81. Lee WY, Chang JW, Nemeth NL, Kang UJ (1999) Vesicular monoamine transporter-2 and aromatic L-amino acid decarboxylase enhance dopamine delivery after L-3,4-dihydroxyphenylalanine administration in parkinsonian rats. J Neurosci 19:3266–3274

    PubMed  CAS  Google Scholar 

  82. Arai R, Karasawa N, Nagatsu I (1995) L-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci Lett 195:195–198

    Article  PubMed  CAS  Google Scholar 

  83. Ng LK, Chase TN, Colburn RW, Kopin IJ (1970) L-Dopa-induced release of cerebral monoamines. Science 170:76–77

    Article  PubMed  CAS  Google Scholar 

  84. Tison F, Mons N, Geffard M, Henry P (1991) The metabolism of exogenous L-dopa in the brain: an immunohistochemical study of its conversion to dopamine in non-catecholaminergic cells of the rat brain. J Neural Transm Park Dis Dement Sect 3:27–39

    Article  PubMed  CAS  Google Scholar 

  85. Yamada H, Aimi Y, Nagatsu I, Taki K, Kudo M, Arai R (2007) Immunohistochemical detection of L-DOPA-derived dopamine within serotonergic fibers in the striatum and the substantia nigra pars reticulate in parkinsonian model rats. Neurosci Res 59:1–7

    Article  PubMed  CAS  Google Scholar 

  86. Arai R, Karazawa N, Nagatsu I (1996) Aromatic L-amino acid decarboxylase is present in serotonergic fibers of the striatum of the rat. A double-labeling immunofluorescence study. Brain Res 706:177–179

    Article  PubMed  CAS  Google Scholar 

  87. Ng LK, Chase TN, Colburn RW, Kopin IJ (1972) L-Dopa in Parkinsonism. A possible mechanism of action. Neurology 22:688–696

    PubMed  CAS  Google Scholar 

  88. Ng LK, Colburn RW, Kopin IJ (1972) Effects of L-dopa on accumulation and efflux of monoamines in particles of brain homogenates. J Pharmacol Exp Ther 183:316–325

    PubMed  CAS  Google Scholar 

  89. Navailles S, Bioulac B, Gross C, De Deurwaerdère P (2010) Serotonergic neurons mediate ectopic release of dopamine induced by L-DOPA in a rat model of Parkinson’s disease. Neurobiol Dis 38:136–143

    Article  PubMed  CAS  Google Scholar 

  90. Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 10:631–634

    Article  PubMed  CAS  Google Scholar 

  91. Kannari K, Yamato H, Shen H, Tomiyama M, Suda T, Matsunaga M (2001) Activation of 5-HT(1A) but not 5-HT(1B) receptors attenuates an increase in extracellular dopamine derived from exogenously administered L-DOPA in the striatum with nigrostriatal denervation. J Neurochem 76:1346–1353

    Article  PubMed  CAS  Google Scholar 

  92. Lindgren HS, Andersson DR, Lagerkvist S, Nissbrandt H, Cenci MA (2010) L-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson’s disease: temporal and quantitative relationship to the expression of dyskinesia. J Neurochem 112:1465–1476

    Article  PubMed  CAS  Google Scholar 

  93. Yamato H, Kannari K, Shen H, Suda T, Matsunaga M (2001) Fluoxetine reduces L-DOPA-derived extracellular DA in the 6-OHDA-lesioned rat striatum. Neuroreport 12:1123–1126

    Article  PubMed  CAS  Google Scholar 

  94. Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–667

    Article  PubMed  CAS  Google Scholar 

  95. Navailles S, Bioulac B, Gross C, De Deurwaerdère P (2011) Chronic L-DOPA therapy alters central serotonergic function and L-DOPA-induced dopamine release in a region-dependent manner in a rat model of Parkinson’s disease. Neurobiol Dis 41:585–590

    Article  PubMed  CAS  Google Scholar 

  96. Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32:229–313

    PubMed  CAS  Google Scholar 

  97. Carta M, Carlsson T, Kirik D, Björklund A (2007) Dopamine released from 5-HT terminal sis the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833

    Article  PubMed  Google Scholar 

  98. Navailles S, De Deurwaerdère P (2012) Imbalanced dopaminergic transmission mediated by serotonergic neurons in L-DOPA-induced dyskinesia. Parkinson’s Disease. doi:10.1155/2012/323686

  99. Bartholini G, Da Prada M, Pletscher A (1968) Decrease of cerebral 5-hydroxytryptamine by 3,4-dihydroxyphenylalanine after inhibition of extracerebral decarboxylase. J Pharm Pharmacol 20:228–229

    Article  PubMed  CAS  Google Scholar 

  100. Everett GM, Borcherding JW (1970) L-DOPA: effect on concentrations of dopamine, norepinephrine, and serotonin in brains of mice. Science 168:849–850

    Article  PubMed  CAS  Google Scholar 

  101. Tohgi H, Abe T, Takahashi S, Takahashi J, Hamato H (1993) Alterations in the concentration of serotonergic and dopaminergic substances in the cerebrospinal fluid of patients with Parkinson’s disease, and their changes after L-dopa administration. Neurosci Lett 159:135–138

    Article  PubMed  CAS  Google Scholar 

  102. Gil S, Park C, Lee J, Koh H (2010) The roles of striatal serotonin and L: -amino-acid decarboxylase on L: -DOPA-induced dyskinesia in a hemiparkinsonian rat model. Cell Mol Neurobiol 30:817–825

    Article  PubMed  CAS  Google Scholar 

  103. Héry F, Simonnet G, Bourgoin S, Soubrié P, Artaud F, Hamon M, Glowinski J (1979) Effect of nerve activity on the in vivo release of [3H]serotonin continuously formed from L-[3H]tryptophan in the caudate nucleus of the cat. Brain Res 169:317–334

    Article  PubMed  Google Scholar 

  104. Thorré K, Sarre S, Smolders I, Ebinger G, Michotte Y (1998) Dopaminergic regulation of serotonin release in the substantia nigra of the freely moving rat using microdialysis. Brain Res 796:107–116

    Article  PubMed  Google Scholar 

  105. Navailles S, Carta M, Guthrie M, De Deurwaerdère P (2012) L-DOPA and serotonergic neurons: functional implication and therapeutic perspectives in Parkinson’s disease. CNS Agents Med Chem (in press)

  106. Navailles S, De Deurwaerdère P (2011) Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology (Berl) 213:213–242

    Article  CAS  Google Scholar 

  107. Gil SJ, Park CH, Lee JE, Minn YK, Koh HC (2011) Positive association between striatal serotonin level and abnormal involuntary movements in chronic L-DOPA-treated hemiparkinsonian rats. Brain Res Bull 84:151–156

    Article  PubMed  CAS  Google Scholar 

  108. Lundblad M, af Bjerkén S, Cenci MA, Pomerleau F, Gerhardt GA, Strömberg I (2009) Chronic intermittent L-DOPA treatment induces changes in dopamine release. J Neurochem 108:998–1008

    Article  PubMed  CAS  Google Scholar 

  109. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Snadmann-Kell D, Rub U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249(Suppl 3):III/1-5

    PubMed  Google Scholar 

  110. Pavese N, Simpson BS, Metta V, Ramlackhansingh A, Chaudhuri KR, Brooks DJ (2011) [(18)F]FDOPA uptake in the raphe nuclei complex reflects serotonin transporter availability. A combined [(18)F]FDOPA and [(11)C]DASB PET study in Parkinson’s disease. Neuroimage. doi:10.1016/j.neuroimage.2011.09.034.

  111. Alexander T, Sortwell CE, Sladek CD, Roth RH, Steece-Collier K (1997) Comparison of neurotoxicity following repeated administration of l-dopa, d-dopa and dopamine to embryonic mesencephalic dopamine neurons in cultures derived from Fisher 344 and Sprague-Dawley donors. Cell Transplant 6:309–315

    Article  PubMed  CAS  Google Scholar 

  112. Basma AN, Morris EJ, Nicklas WJ, Geller HM (1995) L-Dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J Neurochem 64:825–832

    Article  PubMed  CAS  Google Scholar 

  113. Cheng N, Maeda T, Kume T, Kaneko S, Kochiyama H, Akaike A, Goshima Y, Misu Y (1996) Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons. Brain Res 743:278–283

    Article  PubMed  CAS  Google Scholar 

  114. Pardo B, Mean MA, de Yebenes JG (1995) L-Dopa inhibits complex IV of the electron transport chain in catecholamine-rich human neuroblastoma NB69 cells. J Neurochem 64:576–582

    Article  PubMed  CAS  Google Scholar 

  115. Hashiguti H, Nakahara D, Maruyama W, Naoi M, Ikeda T (1993) Simultaneous determination of in vivo hydroxylation of tyrosine and tryptophan in rat striatum by microdialysis-HPLC: relationship between dopamine and serotonin biosynthesis. J Neural Transm Gen Sect 93:213–223

    Article  PubMed  CAS  Google Scholar 

  116. Kuhn DM, Arthur R Jr (1998) Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: possible endogenous toxin to serotonin neurons. J Neurosci 18:7111–7117

    PubMed  CAS  Google Scholar 

  117. Kuhn DM, Arthur RE Jr (1999) L-DOPA-quinone inactivates tryptophan hydroxylase and converts the enzyme to a redox-cycling quinoprotein. Brain Res Mol Brain Res 73:78–84

    Article  PubMed  CAS  Google Scholar 

  118. Maruyama W, Naoi M, Takahashi A, Watanabe H, Konagaya Y, Mokuno K, Hasegawa S, Nakahara D (1992) The mechanism of perturbation in monoamine metabolism by L-dopa therapy: in vivo and in vitro studies. J Neural Transm Gen Sect 90:183–197

    Article  PubMed  CAS  Google Scholar 

  119. Eskow Jaunajars KL, Dupre KB, Ostock CY, Button T, Deak T, Bishop C (2010) Behavioral and neurochemical effects of chronic L-DOPA treatment on nonmotor sequelae in the hemiparkinsonian rat. Behav Pharmacol 21:627–637

    Article  CAS  Google Scholar 

  120. Cao J, Liu J, Zhang QJ, Wang T, Wang S, Han LN, Li Q (2007) The selective 5-HT1A receptor antagonist WAY-100635 inhibits neuronal activity of the ventromedial prefrontal cortex in a rodent model of Parkinson’s disease. Neurosci Bull 23:315–322

    Article  PubMed  CAS  Google Scholar 

  121. De Deurwaerdère P, Chesselet MF (2000) Nigrostriatal lesions alter oral dyskinesia and c-Fos expression induced by the serotonin agonist 1-(m-chlorophenyl)piperazine in adult rats. J Neurosci 20:5170–5178

    PubMed  Google Scholar 

  122. De Deurwaerdère P, Mignon L, Chesselet MF (2010) Physiological and pathophysiological aspects of 5-HT2C receptors in basal ganglia. In: Di Giovanni G, Neve K (eds) The pathophysiology of central 5-HT2C receptors, vol The receptors series. Springer, New York

    Google Scholar 

  123. Fox SH, Moser B, Brotchie JM (1998) Behavioral effects of 5-HT2C receptor antagonism in the substantia nigra zona reticulata of the 6-hydroxydopamine-lseioned rat model of Parkinson’s disease. Exp Neurol 151:35–49

    Article  PubMed  CAS  Google Scholar 

  124. Fox SH, Brotchie JM (2000) 5-HT2C receptor binding is increased in the substantia nigra pars reticulata in Parkinson’s disease. Mov Disord 15:1046–1049

    Article  Google Scholar 

  125. Gui ZH, Zhang QJ, Liu J, Ali U, Wang Y, Wang T, Chen L, Hou C, Fan LL (2010) In vivo modulation of the firing activity of putative slow- and fast-spiking interneurons in the medial prefrontal cortex by 5-HT3 receptors in 6-hydroxydopamine-minduced parkinsonian rats. Neuroscience 169:1315–1325

    Article  PubMed  CAS  Google Scholar 

  126. Chen CP, Alder JT, Bray L, Kingsbury AE, Francis PT, Foster OJ (1998) Post-synaptic 5-HT1A and 5-HT2A receptors are increased in Parkinson’s disease neocortex. Ann NY Acad Sci 861:288–289

    Article  PubMed  CAS  Google Scholar 

  127. Frechilla D, Cobreros A, Salside L, Moratalla R, Insausti R, Luquin M, Del Rio J (2001) Serotonin 5-HT(1A) receptor expression is selectively enhanced in the striosomal compartment of chronic parkinsonian monkeys. Synapse 39:288–296

    Article  PubMed  CAS  Google Scholar 

  128. Huot P, Johnston TH, Koprich JB, Winkelmolen L, Fox SH, Brotchie JM (2010) Regulation of cortical and striatal 5-HT(1A) receptors in the MPTP-lesioned macaque Neurobiol Aging, in press.

  129. Castro ME, Pascual J, Romon T, Berciano J, Figols J, Pazos A (1998) 5-HT1B receptor binding in degenerative movement disorders. Brain Res 290:323–328

    Article  Google Scholar 

  130. Quirion R, Richard J (1987) Differential effects of selective lesion of cholinergic and dopaminergic neurons on serotonin-type 1 receptors in rat brain. Synapse 1:124–130

    Article  PubMed  CAS  Google Scholar 

  131. Zhang X, Andren PE, Greengard P, Svenningsson P (2008) Evidence for a role of the 5-HT1B receptor and its adaptor protein, p11, in L-DOPA treatment of an animal model of Parkinsonism. Proc Natl Acad Sci U S A 105:2163–2168

    Article  PubMed  CAS  Google Scholar 

  132. Zhang QJ, Wang S, Liu J, Ali U, Gui ZH, Wu ZH, Hui YP, Wang Y, Chen L (2010) Unilateral lesion of the nigrostriatal pathway decreases the response of interneurons in medial prefrontal cortex to 5-HT 2A/2C receptor stimulation in the rat. Brain Res 1312:127–137

    Article  PubMed  CAS  Google Scholar 

  133. Zhang X, Andren PE, Svenningsson P (2007) Changes on 5-HT2 receptor mRNAs in striatum and subthalamic nucleus in Parkinson’s disease model. Physiol Behav 92:29–33

    Article  PubMed  CAS  Google Scholar 

  134. Li Y, Huang XF, Deng C, Meyer B, Wu A, Yu Y, Ying W, Yang GY, Yenari MA, Wang Q (2010) Alterations in 5-HT2A receptor binding in various brain regions among 6-hydroxydopamine-induced parkinsonian rats. Synapse 64:224–230

    Article  PubMed  CAS  Google Scholar 

  135. Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT(2A) receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33:1823–1831

    Article  PubMed  Google Scholar 

  136. Fox SH, Brotchie JM (2000) 5-HT(2C) receptor antagonists enhance the behavioural response to dopamine D(1) receptor agonists in 6-hydroxydopamine-lesioned rat. Eur J Pharmacol 398:59–64

    Article  PubMed  CAS  Google Scholar 

  137. Zhang QJ, Li LB, Niu XL, Liu J, Gui ZH, Feng JJ, Ali U, Hui YP, Wu ZH (2011) The pyramidal neurons in the medial prefrontal cortex show decreased response to 5-hydroxytryptamine-3 receptor stimulation in a rodent model of Parkinson’s disease. Brain Res 1384:69–79

    Article  PubMed  CAS  Google Scholar 

  138. Di Giovanni G, Di Matteo V, Pierucci M, Benigno A, Esposito E (2006) Serotonin involvement in the basal ganglia pathophysiology: could the 5-HT2C receptor be a new target for therapeutic strategies? Curr Med Chem 13:3069–3081

    Article  PubMed  Google Scholar 

  139. Di Matteo V, Pierucci M, Esposito E, Cresimanno G, Benigno A, Di Giovanni G (2008) Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson’s disease and other motor disorders. Prog Brain Res 172:423–463

    Article  PubMed  CAS  Google Scholar 

  140. Durif F, Vidailhet M, Assal F, Roche C, Bonnet AM, Agid Y (1997) Low-dose clozapine improves dyskinesias in Parkinson’s disease. Neurology 48:658–662

    PubMed  CAS  Google Scholar 

  141. Ikeguchi K, Kuroda A (1995) Mianserin treatment of patients with psychosis induced by antiparkinsonian drugs. Eur Arch Psychiatry Clin Neurosci 244:320–324

    Article  PubMed  CAS  Google Scholar 

  142. Nicholson SL, Brotchie JM (2002) 5-hydroxytryptamine (5-HT, serotonin) and Parkinson’s disease—opportunities for novel therapeutics to reduce the problems of levodopa therapy. Eur J Neurol S3:1–6

    Article  Google Scholar 

  143. Zoldan J, Friedberg G, Livneh M, Melamed E (1995) Psychosis in advanced Parkinson’s disease: treatment with ondansetron, a 5-HT3 receptor antagonist. Neurology 45:1305–1308

    PubMed  CAS  Google Scholar 

  144. Zoldan J, Friedberg G, Weizman A, Melamed E (1996) Ondansetron, a 5-HT3 antagonist for visual hallucinations and paranoid delusional disorder associated with chronic l-DOPA therapy in advanced Parkinson’s disease. Adv Neurol 69:541–544

    PubMed  CAS  Google Scholar 

  145. Ballanger B, Strafella AP, van Eimeren T, Zurowski M, Rusjan PM, Houle S, Fox SH (2010) Serotonin 2A receptors and visual hallucinations in Parkinson disease. Arch Neurol 67:416–421

    Article  PubMed  Google Scholar 

  146. Meltzer HY, Mills R, Revell S, Williams H, Johnson A, Bahr D, Friedman JH (2010) Pimavanserin, a serotonin(2A) receptor inverse agonist, for the treatment of Parkinson’s disease psychosis. Neuropsychopharmacology 35:881–892

    Article  PubMed  CAS  Google Scholar 

  147. Rabey JM (2009) Hallucinations and psychosis in Parkinson’s disease. Parkinsonism Relat Disord 15:S105–S110

    Article  PubMed  Google Scholar 

  148. Weiner DM, Vanover KE, Brann MR, Meltzer HY, Davis RE (2003) Psychosis of Parkinson’s disease: serotonin 2A inverse agonists as potential therapeutics. Curr Opin Investig Drugs 4:815–819

    PubMed  CAS  Google Scholar 

  149. Meco G, Stirpe P, Edito F, Purcaro C, Valente M, Bernardi S, Vanacore N (2009) Aripiprazole in L-dopa-induced dyskinesias: a one-year open-label pilot study. J Neural Transm 116:881–884

    Article  PubMed  CAS  Google Scholar 

  150. Vanover KE, Betz AJ, Weber SM, Bibbiani F, Kielaite A, Weiner DM, Davis RE, Chase TN, Salamone JD (2008) A 5-HT2A receptor inverse agonist, ACP-103, reduces tremor in a rat model and levodopa-induced dyskinesias in a monkey model. Pharmacol Biochem Behav 90:540–544

    Article  PubMed  CAS  Google Scholar 

  151. Ferguson MC, Nayyar T, Deutch AY, Ansah TA (2010) 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 59:31–36

    Article  PubMed  CAS  Google Scholar 

  152. Werneck AL, Rosso AL, Vincent MB (2009) The use of an antagonist 5-HT2a/c for depression and motor function in Parkinson’s disease. Arq Neuropsiquiatr 67:407–412

    Article  PubMed  Google Scholar 

  153. Rylander D, Parent M, O’Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA (2010) Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 68:619–628

    Article  PubMed  CAS  Google Scholar 

  154. Zeng BY, Iravani MM, Jackson MJ, Rose S, Parent A, Jenner P (2010) Morphological changes in serotoninergic neurites in the striatum and globus pallidus in levodopa primed MPTP treated common marmosets with dyskinesia. Neurobiol Dis 40:599–607

    Article  PubMed  CAS  Google Scholar 

  155. Berthet A, Porras G, Doudnikoff E, Stark H, Cador M, Bezard E, Bloch B (2009) Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia. J Neurosci 29:4829–4835

    Article  PubMed  CAS  Google Scholar 

  156. Picconi B, Pisani A, Barone I, Bonsi P, Centonze D, Bernardi G, Calabresi P (2005) Pathological synaptic plasticity in the striatum: implications for Parkinson’s disease. Neurotoxicology 26:779–783

    Article  PubMed  CAS  Google Scholar 

  157. Picconi B, Ghiglieri V, Calabresi P (2010) L-3,4-Dihydroxyphenylalanine-indued sprouting of serotonin axon terminals: a useful biomarker for dyskinesias? Ann Neurol 68:578–580

    Article  PubMed  CAS  Google Scholar 

  158. Prescott IA, Dostrovsky JO, Moro E, Hodaie M, Lozano AM, Hutchison WD (2009) Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson’s disease patients. Brain 132:309–318

    Article  PubMed  CAS  Google Scholar 

  159. Krack P, Hamel W, Mehdorn HM, Deuschl G (1999) Surgical treatment of Parkinson’s disease. Curr Opin Neurol 12:417–425

    Article  PubMed  CAS  Google Scholar 

  160. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111

    Article  PubMed  CAS  Google Scholar 

  161. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Macias R, Alvarez L, Guridi J, Vitek J, DeLong MR (2000) Pathophysiologic basis of surgery for Parkinson’s disease. Neurology 55(Suppl 6):S7–S12

    PubMed  CAS  Google Scholar 

  162. Welter ML, Houeto JL, Tezenas du Montcel S, Mesnage V, Bonnet AM, Pillon B, Arnulf I, Pidoux B, Dormont D, Cornu P, Agid Y (2002) Clinical predictive factors of subthalamic stimulation in Parkinson’s disease. Brain 125:575–583

    Article  PubMed  CAS  Google Scholar 

  163. Benabid AL, Chabardes S, Seigneuret E, Pollak P, Fraix V, Krack P, Lebas JF, Grand S, Piallat B (2005) Functional neurosurgery: past, present, and future. Clin Neurosurg 52:265–270

    PubMed  CAS  Google Scholar 

  164. Fraix V, Pollak P, Van Blercom N, Xie J, Krack P, Koudsie A, Benabid AL (2000) Effect of subthalamic nucleus stimulation on levodopa-induced dyskinesia in Parkinson’s disease. Neurology 26:1921–1923

    Google Scholar 

  165. Krack P, Limousin P, Benabid AL, Pollak P (1997) Chronic stimulation of subthalamic nucleus improves levodopa-induced dyskinesia in Parkinson’s disease. Lancet 350:1676

    Article  PubMed  CAS  Google Scholar 

  166. Krack P, Batir A, Van Blercom N et al (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349:1925–1934

    Article  PubMed  CAS  Google Scholar 

  167. Benabid AL, Benazzouz A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17(Suppl 3):S73–S74

    Article  PubMed  Google Scholar 

  168. Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17(Suppl 3):S63–S68

    Article  PubMed  Google Scholar 

  169. McIntyre CC, Savasta M, GoffL Kerkerian-Le, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248

    Article  PubMed  Google Scholar 

  170. Lopiano L, Rizzone M, Bergamasco B, Tavella A, Torre E, Perozzo P, Valentini MC, Lanotte M (2001) Deep brain stimulation of the subthalamic nucleus: clinical effectiveness and safety. Neurology 27:552–554

    Google Scholar 

  171. Molinuevo JL, Valldeoriola F, Tolosa E, Rumia J, Valls-Sole J, Roldan H, Ferrer E (2000) Levodopa withdrawal after bilateral subthalamic nucleus stimulation in advanced Parkinson disease. Arch Neurol 57:983–988

    Article  PubMed  CAS  Google Scholar 

  172. Moro E, Scerrati M, Romito LM, Roselli R, Tonali P, Albanese A (1999) Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology 53:85–90

    PubMed  CAS  Google Scholar 

  173. Oueslati A, Sgambato-Faure V, Melon C, Kachidian P, Gubellini P, Amri M, Kerkerian-Le Goff L, Salin P (2007) High-frequency stimulation of the subthalamic nucleus potentiates L-DOPA-induced neurochemical changes in the striatum in a rat model of Parkinson’s disease. J Neurosci 27:2377–2386

    Article  PubMed  CAS  Google Scholar 

  174. Simonin C, Tir M, Devos D, Jreisler A, Dujardin K, Salleron J, Delval A, Blond S, Defebvre L, Destee A, Krystkowiak P (2009) Reduced levodopa-induced complications after 5 years of subthalamic stimulation in Parkinson’s disease: a second honeymoon. J Neurol 256:1736–1741

    Article  PubMed  Google Scholar 

  175. Gubellini P, Eusebio A, Oueslati A, Melon C, Kerkerian-Le Goff L, Salin P (2006) Chronic high-frequency stimulation of the subthalamic nucleus and L-DOPA treatment in experimental parkinsonism: effects on motor behaviour and striatal glutamate transmission. Eur J Neurosci 24:1802–1814

    Article  PubMed  Google Scholar 

  176. Nimura T, Yamaguchi K, Ando T, Shibuya S, Oikawa T, Nakagawa A, Shirane R, Itoh M, Tominaga T (2005) Attenuation of fluctuating striatal synaptic dopamine levels in patients with Parkinson disease in response to subthalamic nucleus stimulation: a positron emission tomography study. J Neurosurg 103:968–973

    Article  PubMed  CAS  Google Scholar 

  177. Lacombe E, Carcenac C, Boulet S, Feurstein C, Bertrand A, Poupard A, Savasta M (2007) High-frequency stimulation of the subthalamic nucleus prolongs the increase in striatal dopamine induced by acute l-3,4-dihydroxyphenylalanine in dopaminergic denervated rats. Eur J Neurosci 26:1670–1680

    Article  PubMed  Google Scholar 

  178. Zesiewicz TA, Hauser RA (2002) Depression in Parkinson’s disease. Curr Psychiatry Rep 4:69–73

    Article  PubMed  Google Scholar 

  179. Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67:53–83

    Article  PubMed  CAS  Google Scholar 

  180. Siri C, Cilia R, De Gaspari D, Canesi M, Meucci N, Zecchinelli AL, Pezzoli G, Antonini A (2010) Cognitive status of patients with Parkinson’s disease and pathological gambling. J Neurol 257:247–252

    Article  PubMed  Google Scholar 

  181. Voon V, Fernagut PO, Wickens J, Baunez C, Rodriguez M, Pavon N, Juncos JL, Obeso JA, Bezard E (2009) Chronic dopaminergic stimulation in Parkinson’s disease: from dyskinesias to impulse control disorders. Lancet Neurol 8:1140–1149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from “Centre National de la Recherche Scientifique”, Bordeaux 2 University and the Fondation de France. The authors thank Dr Martin Guthrie for linguistic assistance.

Conflict of Interest

The authors report no biomedical financial interest or potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe De Deurwaerdère.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navailles, S., De Deurwaerdère, P. Contribution of Serotonergic Transmission to the Motor and Cognitive Effects of High-Frequency Stimulation of the Subthalamic Nucleus or Levodopa in Parkinson’s Disease. Mol Neurobiol 45, 173–185 (2012). https://doi.org/10.1007/s12035-011-8230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8230-0

Keywords

Navigation