Skip to main content
Log in

Crossing Species Barriers Relies on Structurally Distinct Prion Assemblies and Their Complementation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Prion replication results from the autocatalytic templated assisted conversion of the host-encoded prion protein PrPC into misfolded, polydisperse PrPSc conformers. Structurally distinct PrPSc conformers can give rise to multiple prion strains. Within and between prion strains, the biological activity (replicative efficacy and specific infectivity) of PrPSc assemblies is size dependent and thus reflects an intrinsic structural heterogeneity. The contribution of such PrPSc heterogeneity across species prion adaptation, which is believed to be based on fit adjustment between PrPSc template(s) and host PrPC, has not been explored. To define the structural-to-fitness PrPSc landscape, we measured the relative capacity of size-fractionated PrPSc assemblies from different prion strains to cross mounting species barriers in transgenic mice expressing foreign PrPC. In the absence of a transmission barrier, the relative efficacy of the isolated PrPSc assemblies to induce the disease is like the efficacy observed in the homotypic context. However, in the presence of a transmission barrier, size fractionation overtly delays and even abrogates prion pathogenesis in both the brain and spleen tissues, independently of the infectivity load of the isolated assemblies. Altering by serial dilution PrPSc assembly content of non-fractionated inocula aberrantly reduces their specific infectivity, solely in the presence of a transmission barrier. This suggests that synergy between structurally distinct PrPSc assemblies in the inoculum is requested for crossing the species barrier. Our data support a mechanism whereby overcoming prion species barrier requires complementation between structurally distinct PrPSc assemblies. This work provides key insight into the “quasispecies” concept applied to prions, which would not necessarily rely on prion substrains as constituent but on structural PrPSc heterogeneity within prion population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data supporting our findings are presented in the main paper and additional files.

Abbreviations

Bov:

bovine

BSE:

bovine spongiform encephalopathy

CJD:

Creutzfeldt-Jakob disease

Ha:

hamster

Ov:

ovine

PrP:

prion protein

PK:

proteinase K

PrPres :

proteinase K resistant PrPSc

PrPSc :

pathological/abnormal form of the prion protein

suPrP:

PrP elementary brick

SV:

sedimentation velocity

tg:

transgenic

References

  1. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144

    Article  CAS  Google Scholar 

  2. Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550

    Article  CAS  Google Scholar 

  3. Beringue V, Vilotte JL, Laude H (2008) Prion agent diversity and species barrier. Vet Res 39(4):47. https://doi.org/10.1051/vetres:2008024v08241

    Article  PubMed  Google Scholar 

  4. Bessen RA, Marsh RF (1992) Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol 73(Pt 2):329–334

    Article  Google Scholar 

  5. Bruce ME (2003) TSE strain variation. Br Med Bull 66:99–108

    Article  CAS  Google Scholar 

  6. Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318(5852):930–936

    Article  CAS  Google Scholar 

  7. Sim VL, Caughey B (2009) Ultrastructures and strain comparison of under-glycosylated scrapie prion fibrils. Neurobiol Aging 30(12):2031–2042. https://doi.org/10.1016/j.neurobiolaging.2008.02.016

    Article  CAS  PubMed  Google Scholar 

  8. Spassov S, Beekes M, Naumann D (2006) Structural differences between TSEs strains investigated by FT-IR spectroscopy. Biochim Biophys Acta 1760(7):1138–1149. https://doi.org/10.1016/j.bbagen.2006.02.018

    Article  CAS  PubMed  Google Scholar 

  9. Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, Mastrianni J, Lugaresi E et al (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274(5295):2079–2082

    Article  CAS  Google Scholar 

  10. Weissmann C, Li J, Mahal SP, Browning S (2011) Prions on the move. EMBO Rep 12(11):1109–1117. https://doi.org/10.1038/embor.2011.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bett C, Joshi-Barr S, Lucero M, Trejo M, Liberski P, Kelly JW, Masliah E, Sigurdson CJ (2012) Biochemical properties of highly neuroinvasive prion strains. PLoS Pathog 8(2):e1002522. https://doi.org/10.1371/journal.ppat.1002522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bett C, Lawrence J, Kurt TD, Orru C, Aguilar-Calvo P, Kincaid AE, Surewicz WK, Caughey B et al (2017) Enhanced neuroinvasion by smaller, soluble prions. Acta Neuropathol Commun 5(1):32. https://doi.org/10.1186/s40478-017-0430-z

  13. Igel-Egalon A, Moudjou M, Martin D, Busley A, Knapple T, Herzog L, Reine F, Lepejova N et al (2017) Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick. PLoS Pathog 13(9):e1006557. https://doi.org/10.1371/journal.ppat.1006557

    Article  Google Scholar 

  14. Kim C, Haldiman T, Surewicz K, Cohen Y, Chen W, Blevins J, Sy MS, Cohen M et al (2012) Small protease sensitive oligomers of PrP (Sc) in distinct human prions determine conversion rate of PrP(C). PLoS Pathog 8(8):e1002835. https://doi.org/10.1371/journal.ppat.1002835

    Article  CAS  Google Scholar 

  15. Laferriere F, Tixador P, Moudjou M, Chapuis J, Sibille P, Herzog L, Reine F, Jaumain E et al (2013) Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics. PLoS Pathog 9(10):e1003702. https://doi.org/10.1371/journal.ppat.1003702

    Article  Google Scholar 

  16. Sajnani G, Silva CJ, Ramos A, Pastrana MA, Onisko BC, Erickson ML, Antaki EM, Dynin I et al (2012) PK-sensitive PrP is infectious and shares basic structural features with PK-resistant PrP. PLoS Pathog 8(3):e1002547. https://doi.org/10.1371/journal.ppat.1002547

    Article  CAS  Google Scholar 

  17. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437(7056):257–261. https://doi.org/10.1038/nature03989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A, Laude H, Beringue V (2010) The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog 6(4):e1000859. https://doi.org/10.1371/journal.ppat.1000859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tzaban S, Friedlander G, Schonberger O, Horonchik L, Yedidia Y, Shaked G, Gabizon R, Taraboulos A (2002) Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes. Biochemistry 41(42):12868–12875

    Article  CAS  Google Scholar 

  20. Igel-Egalon A, Laferriere F, Moudjou M, Bohl J, Mezache M, Knapple T, Herzog L, Reine F et al (2019) Early stage prion assembly involves two subpopulations with different quaternary structures and a secondary templating pathway. Commun Biol 2:363. https://doi.org/10.1038/s42003-019-0608-y

  21. Haldiman T, Kim C, Cohen Y, Chen W, Blevins J, Qing L, Cohen ML, Langeveld J et al (2013) Co-existence of distinct prion types enables conformational evolution of human PrPSc by competitive selection. J Biol Chem 288(41):29846–29861. https://doi.org/10.1074/jbc.M113.500108

    Article  CAS  Google Scholar 

  22. Igel-Egalon A, Bohl J, Moudjou M, Herzog L, Reine F, Rezaei H, Beringue V (2019) Heterogeneity and architecture of pathological prion protein assemblies: Time to revisit the molecular basis of the prion replication process? Viruses 11(5). https://doi.org/10.3390/v11050429

    Article  CAS  Google Scholar 

  23. Makarava N, Baskakov IV (2013) The evolution of transmissible prions: the role of deformed templating. PLoS Pathog 9(12):e1003759. https://doi.org/10.1371/journal.ppat.1003759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baskakov IV (2014) The many shades of prion strain adaptation. Prion 8(2). https://doi.org/10.4161/pri.27836

    Article  Google Scholar 

  25. Asante EA, Linehan JM, Desbruslais M, Joiner S, Gowland I, Wood AL, Welch J, Hill AF et al (2002) BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J 21(23):6358–6366

    Article  CAS  Google Scholar 

  26. Beringue V, Andreoletti V, LE DUR A, Essalmani R, Vilotte JL, Lacroux C, Reine F, Herzog L et al (2007) A bovine prion acquires an epidemic bovine spongiform encephalopathy strain-like phenotype on interspecies transmission. J Neurosci 27(26):6965–6971. https://doi.org/10.1523/jneurosci.0693-07.2007

    Article  CAS  Google Scholar 

  27. Beringue V, Herzog L, Jaumain E, Reine F, Sibille P, Le Dur A, Vilotte JL, Laude H (2012) Facilitated cross-species transmission of prions in extraneural tissue. Science 335(6067):472–475. https://doi.org/10.1126/science.1215659

    Article  CAS  PubMed  Google Scholar 

  28. Chapuis J, Moudjou M, Reine F, Herzog L, Jaumain E, Chapuis C, Quadrio I, Boulliat J et al (2016) Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions. Acta Neuropathol Commun 4(1):2–15. https://doi.org/10.1186/s40478-016-0284-9

  29. Scott MR, Groth D, Tatzelt J, Torchia M, Tremblay P, DeArmond SJ, Prusiner SB (1997) Propagation of prion strains through specific conformers of the prion protein. J Virol 71(12):9032–9044

    Article  CAS  Google Scholar 

  30. Beringue V, Bencsik A, LE DUR A, Reine F, Lan Lai T, Chenais N, Tilly G, BiacabÈ A-G et al (2006) Isolation from cattle of a prion strain distinct from that causing bovine spongiform encephalopathy. PLoS Pathog 2(10):956–963. https://doi.org/10.1371/journal.ppat.0020112

    Article  Google Scholar 

  31. Castilla J, Gutierrez Adan A, Brun A, Pintado B, Ramirez MA, Parra B, Doyle D, Rogers M et al (2003) Early detection of PrPres in BSE-infected bovine PrP transgenic mice. Arch Virol 148(4):677–691. https://doi.org/10.1007/s00705-002-0958-4

    Article  Google Scholar 

  32. Hecker R, Taraboulos A, Scott M, Pan KM, Yang SL, Torchia M, Jendroska K, DeArmond SJ et al (1992) Replication of distinct scrapie prion isolates is region specific in brains of transgenic mice and hamsters. Genes Dev 6(7):1213–1228

    Article  CAS  Google Scholar 

  33. Langevin C, Andreoletti O, Le Dur A, Laude H, Beringue V (2011) Marked influence of the route of infection on prion strain apparent phenotype in a scrapie transgenic mouse model. Neurobiol Dis 41(1):219–225. https://doi.org/10.1016/j.nbd.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  34. Le Dur A, Lai TL, Stinnakre MG, Laisne A, Chenais N, Rakotobe S, Passet B, Reine F et al (2017) Divergent prion strain evolution driven by PrPC expression level in transgenic mice. Nat Commun 8:14170–14111. https://doi.org/10.1038/ncomms14170

  35. Casalone C, Zanusso G, Acutis P, Ferrari S, Capucci L, Tagliavini F, Monaco S, Caramelli M (2004) Identification of a second bovine amyloidotic spongiform encephalopathy: molecular similarities with sporadic Creutzfeldt-Jakob disease. Proc Natl Acad Sci U S A 101(9):3065–3070. https://doi.org/10.1073/pnas.0305777101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feraudet C, Morel N, Simon S, Volland H, Frobert Y, Creminon C, Vilette D, Lehmann S et al (2005) Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280(12):11247–11258. https://doi.org/10.1074/jbc.M407006200

    Article  Google Scholar 

  37. Krasemann S, Groschup MH, Harmeyer S, Hunsmann G, Bodemer W (1996) Generation of monoclonal antibodies against human prion proteins in PrP0/0 mice. Mol Med 2(6):725–734

    Article  CAS  Google Scholar 

  38. Kascsak RJ, Rubenstein R, Merz PA, Tonna-DeMasi M, Fersko R, Carp RI, Wisniewski HM, Diringer H (1987) Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. J Virol 61(12):3688–3693

    Article  CAS  Google Scholar 

  39. Kimberlin RH, Walker CA (1978) Evidence that the transmission of one source of scrapie agent to hamsters involves separation of agent strains from a mixture. J Gen Virol 39(3):487–496. https://doi.org/10.1099/0022-1317-39-3-487

    Article  CAS  PubMed  Google Scholar 

  40. Kimberlin RH, Walker CA, Fraser H (1989) The genomic identity of different strains of mouse scrapie is expressed in hamsters and preserved on reisolation in mice. J Gen Virol 70(Pt 8):2017–2025. https://doi.org/10.1099/0022-1317-70-8-2017

    Article  PubMed  Google Scholar 

  41. Nonno R, Di Bari MA, Cardone F, Vaccari G, Fazzi P, Dell’Omo G, Cartoni C, Ingrosso L et al (2006) Efficient transmission and characterization of Creutzfeldt-Jakob disease strains in bank voles. PLoS Pathog 2(2):e12. https://doi.org/10.1371/journal.ppat.0020012

    Article  Google Scholar 

  42. Beringue V, Bencsik A, Le Dur A, Reine F, Lai TL, Chenais N, Tilly G, Biacabe AG et al (2006) Isolation from cattle of a prion strain distinct from that causing bovine spongiform encephalopathy. PLoS Pathog 2(10):e112. https://doi.org/10.1371/journal.ppat.0020112

    Article  Google Scholar 

  43. Kobayashi A, Asano M, Mohri S, Kitamoto T (2009) A traceback phenomenon can reveal the origin of prion infection. Neuropathology 29(5):619–624. https://doi.org/10.1111/j.1440-1789.2008.00973.x

    Article  PubMed  Google Scholar 

  44. Race R, Chesebro B (1998) Scrapie infectivity found in resistant species. Nature 392(6678):770. https://doi.org/10.1038/33834

    Article  CAS  PubMed  Google Scholar 

  45. Hill AF, Joiner S, Linehan J, Desbruslais M, Lantos PL, Collinge J (2000) Species-barrier-independent prion replication in apparently resistant species. Proc Natl Acad Sci U S A 97(18):10248–10253. https://doi.org/10.1073/pnas.97.18.10248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cronier S, Gros N, Tattum MH, Jackson GS, Clarke AR, Collinge J, Wadsworth JD (2008) Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin. Biochem J 416(2):297–305. https://doi.org/10.1042/BJ20081235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fryer HR, McLean AR (2011) There is no safe dose of prions. PLoS One 6(8):e23664. https://doi.org/10.1371/journal.pone.0023664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Al-Dybiat I, Moudjou M, Martin D, Reine F, Herzog L, Truchet S, Berthon P, Laude H et al (2019) Prion strain-dependent tropism is maintained between spleen and granuloma and relies on lymphofollicular structures. Sci Rep 9(1):14656. https://doi.org/10.1038/s41598-019-51084-1

  49. Halliez S, Reine F, Herzog L, Jaumain E, Haik S, Rezaei H, Vilotte JL, Laude H et al (2014) Accelerated, spleen-based titration of variant Creutzfeldt-Jakob disease infectivity in transgenic mice expressing human prion protein with sensitivity comparable to that of survival time bioassay. J Virol 88(15):8678–8686. https://doi.org/10.1128/JVI.01118-14

    Article  Google Scholar 

  50. Eigen M, Schuster P (1977) The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle Naturwissenschaften 64(11):541–565

    CAS  Google Scholar 

  51. Shorter J (2010) Emergence and natural selection of drug-resistant prions. Mol Biosyst 6(7):1115–1130. https://doi.org/10.1039/c004550k

    Article  CAS  Google Scholar 

  52. Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann C (2010) Darwinian evolution of prions in cell culture. Science 327(5967):869–872. https://doi.org/10.1126/science.1183218

    Article  CAS  PubMed  Google Scholar 

  53. Nee S (2016) The evolutionary ecology of molecular replicators. R Soc Open Sci 3(8):160235. https://doi.org/10.1098/rsos.160235

    Article  PubMed  PubMed Central  Google Scholar 

  54. Deleault NR, Piro JR, Walsh DJ, Wang F, Ma J, Geoghegan JC, Supattapone S (2012) Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci U S A 109(22):8546–8551. https://doi.org/10.1073/pnas.1204498109

    Article  PubMed  PubMed Central  Google Scholar 

  55. Deleault NR, Walsh DJ, Piro JR, Wang F, Wang X, Ma J, Rees JR, Supattapone S (2012) Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Natl Acad Sci U S A 109(28):E1938–E1946. https://doi.org/10.1073/pnas.1206999109

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327(5969):1132–1135. https://doi.org/10.1126/science.1183748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spagnolli G, Rigoli M, Orioli S, Sevillano AM, Faccioli P, Wille H, Biasini E, Requena JR (2019) Full atomistic model of prion structure and conversion. PLoS Pathog 15(7):e1007864. https://doi.org/10.1371/journal.ppat.1007864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Masel J, Jansen VA (2001) The measured level of prion infectivity varies in a predictable way according to the aggregation state of the infectious agent. Biochim Biophys Acta 1535(2):164–173. https://doi.org/10.1016/s0925-4439(00)00095-8

    Article  CAS  PubMed  Google Scholar 

  59. Huor A, Douet JY, Lacroux C, Lugan S, Tillier C, Aron N, Cassard H, Arnold M et al (2017) Infectivity in bone marrow from sporadic CJD patients. J Pathol. https://doi.org/10.1002/path.4954

    Article  Google Scholar 

  60. Vilotte JL, Soulier S, Essalmani R, Stinnakre MG, Vaiman D, Lepourry L, Da Silva JC, Besnard N et al (2001) Markedly increased susceptibility to natural sheep scrapie of transgenic mice expressing ovine prp. J Virol 75(13):5977–5984. https://doi.org/10.1128/JVI.75.13.5977-5984.2001

    Article  CAS  Google Scholar 

  61. Foster JD, Dickinson AG (1988) The unusual properties of CH1641, a sheep-passaged isolate of scrapie. Vet Rec 123(1):5–8

    Article  CAS  Google Scholar 

  62. Nonno R, Marin-Moreno A, Carlos Espinosa J, Fast C, Van Keulen L, Spiropoulos J, Lantier I, Andreoletti O et al (2020) Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Sci Rep 10(1):19. https://doi.org/10.1038/s41598-019-57005-6

  63. Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64(6):783–790. https://doi.org/10.1016/j.neuron.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  64. Schmidt C, Fizet J, Properzi F, Batchelor M, Sandberg MK, Edgeworth JA, Afran L, Ho S et al (2015) A systematic investigation of production of synthetic prions from recombinant prion protein. Open Biol 5(12):150165. https://doi.org/10.1098/rsob.150165

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of Infectiology of fishes and rodent facilities (INRAE, Jouy-en-Josas, France; doi:https://doi.org/10.15454/1.5572427140471238E12) for animal care and Dr. Benjamin Dehay for critical reading of the manuscript.

Funding

This work was funded by the Fondation pour la Recherche Médicale (Equipe FRM DEQ20150331689), the European Research Council (ERC Starting Grant SKIPPERAD, number 306321), and the Ile de France region (DIM MALINF).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AIE, FL, PT, MM, HL, HR, and VB. Data curation and analysis, AIE, FL, PT, MM, LH, FR, JMT, HL, HR, and VB. Resources, HL, JMT, HR, and VB. Writing – original draft, AIE, HR, and VB. Writing – review and editing, AIE, HR, and VB. Visualization, AIE, HR, and VB. Supervision, VB. Funding acquisition, HR and VB. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Human Rezaei or Vincent Béringue.

Ethics declarations

Ethics Approval

All the experiments involving animals were carried out in strict accordance with EU directive 2010/63 and were approved by INRA local ethics committee (Comethea; permit numbers 12-034 and 15-056).

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 15194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igel-Egalon, A., Laferrière, F., Tixador, P. et al. Crossing Species Barriers Relies on Structurally Distinct Prion Assemblies and Their Complementation. Mol Neurobiol 57, 2572–2587 (2020). https://doi.org/10.1007/s12035-020-01897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01897-3

Keywords

Navigation