Skip to main content
Log in

Gain-assisted plasmonic metamaterials: mimicking nature to go across scales

  • Life, New Materials and Plasmonics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Nature as a source of inspiration for designing and fabricating nanostructured materials with unconventional properties is an unparalleled driving force of this work leading to low-loss metamaterials. Here, we report about a multipronged approach to create optical metamaterials based on plasmonic nanostructures, hierarchical organization and interplay between plasmon elements and excitonic molecules. This work is focused on strategies and approaches to produce gain to metamaterials across scales with the aim of realizing low-loss optical materials and unlocking their unconvetional electromagnetic properties. Finally, we describe how a biomimetic approach based on gain-functionalized bionanoparticle can be harnessed for diagnostics and theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90:027402

    Article  Google Scholar 

  • Bhowmick S, Saini S, Shenoy VB, Bagchi B (2006) Resonance energy transfer from a fluorescent dye to a metal nanoparticle. J Chem Phys 125:181102–16

    Article  Google Scholar 

  • Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550. doi:10.1021/nl070363y

  • De Luca A, Grzelczak MP, Pastoriza-Santos I, Liz-Marzán LM, Deda ML, Striccoli M, Strangi G (2011) Dispersed and encapsulated gain medium in pPlasmonic nanoparticles: a multipronged approach to mitigate optical losses. ACS Nano 5:5823–5829

    Article  Google Scholar 

  • De Luca A, Ferrie M, Ravaine S, La Deda M, Infusino M, Rahimi Rashed A, Veltri A, Aradian A, Scaramuzza N, Strangi G (2012) Gain functionalized coreshell nanoparticles: the way to selectively compensate absorptive losses. J Mater Chem 22:8846–8852

  • De Luca A, Depalo N, Fanizza E, Striccoli M, Curri ML, Infusino M, Rashed AR, Deda ML, Strangi G (2013) Plasmon mediated super-absorber flexible nanocomposite for metamaterials. Nanoscale 5:6097

    Article  Google Scholar 

  • De Luca A, Dhama R, Rashed AR, Coutant C, Ravaine S, BaroisP, Infusino M, Strangi G (2014) Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores. Appl Phys Lett 104(10):103103

  • Dorfman KE, Jha PK, Voronine DV, Genevet P, Capasso F, Scully MO (2013) Quantum-coherence-enhanced surface plasmon amplification by stimulated emission of radiation. Phys Rev Lett 111:043601

    Article  Google Scholar 

  • Doussineau T, Trupp S, Mohr GJ (2009) Ratiometric pH-Nanosensors based on rhodamine-doped silica nanoparticles functionalized with a naphthalimide derivative. J Colloid Interface Sci 339:266–270

    Article  CAS  Google Scholar 

  • Draine BT (2000) Light scattering by nonspherical particles: theory, measurements, and applications. Academic Press, New York

  • Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, vanVeggel FCJM, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002

  • Fang A, Koschny T, Wegener M, Soukoulis CM (2009) Self-consistent calculation of metamaterials with gain. Phys Rev B 79:241104

    Article  Google Scholar 

  • Fernández-López C, Mateo-Mateo C, Alvarez-Puebla RA, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM (2009) Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir 25:13894–13899

    Article  Google Scholar 

  • Fontana J, Dressick WJ, Phelps J, Johnson JE, Rendell RW, Sampson T, Ratna BR, Soto CM, Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly. Small 10(15), 3058–3063 (2014). doi:10.1002/smll.201400470

  • Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  • Geiger FC, Eber FJ, Eiben S, Mueller A, Jeske H, Spatz JP, Wege C ((2013)) Tmv nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale 5:808–3816. doi:10.1039/C3NR33724C

  • Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75:1139–1152

    Article  CAS  Google Scholar 

  • Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  • Infusino M, Luca A, Veltri A, Vázquez-Vázquez C, Correa-Duarte MA, Dhama R, Strangi G (2014) Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules. ACS Photon 1(4):371–376

    Article  CAS  Google Scholar 

  • Jones M, Lo SS, Scholes GD (2009) Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. PNAS 106:3011–3016

    Article  CAS  Google Scholar 

  • Khlebtsov NG (2008) Optics and biophotonics of nanoparticles with a plasmon resonance. Quantum Electron 38:504

    Article  CAS  Google Scholar 

  • Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24

    Article  CAS  Google Scholar 

  • Lawandy NM (2004) Localized surface plasmon singularities in amplifying media. Appl Phys Lett. 85:5040–5042

    Article  CAS  Google Scholar 

  • Lawandy NM (2005) Nano-particle plasmonics in active media. Proc SPIE 59240:59240–113

    Article  Google Scholar 

  • Lee JY, Buxton GA, Balazs AC (2004) Using nanoparticles to create self-healing composites. J Chem Phys 121:5531

    Article  CAS  Google Scholar 

  • Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M, Stuhlmann H (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12(3): 354–360. doi:10.1038/nm1368

  • Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129(11):3104–3109. doi:10.1021/ja063887t

  • Nan A, Bai X, Son SJ, Lee SB, Ghandehari H (2008) Cellular uptake and cytotoxicity of silica nanotubes. Nano Lett 8(8):2150–2154. doi: 10.1021/nl0802741

  • Noginov MA, Zhu G, Bahoura M, Adegoke J, Small CE, Ritzo BA, Drachev VP, Shalaev VM (2006) Enhancement of surface plasmons in an ag aggregate by optical gain in a dielectric medium. Opt Lett 31:3022–3024

    Article  CAS  Google Scholar 

  • Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Let. 85:3966–3969

    Article  CAS  Google Scholar 

  • Pokorski JK, Steinmetz NF (2011) The art of engineering viral nanoparticles. Mol Pharm 8(1):29–43 doi:10.1021/mp100225y

  • Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex structures. Science 302:419–422

    Article  CAS  Google Scholar 

  • Rodríguez-Fernández J, Pérez-Juste J, deAbajo FJG, Liz-Marzán LM (2006) Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 22:7007–7010

  • Salman AA, Tortschanoff A, van derZwan G, vanMourik F, Chergui M (2009) A model for the multi-exponential excited-state decay of cdse nanocrystals. Chem Phys 357:96–101

  • Sanlés-Sobrido M, Exner W, Rodríguez-Lorenzo L, Rodríguez-González B, Correa-Du arte MA, Alvarez-Puebla RA, Liz-Marzán L (2009) Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J Am Chem Soc 131:2699–2705

  • Sanlés-Sobrido M, Pérez-Lorenzo M, Rodríguez-González B, Salgueiriño V, Correa- Du arte MA (2012) Back cover: highly active nanoreactors: nanomaterial encapsulation based on confined catalysis. Angew Chem Int Ed 51:3877–3882

  • Sapsford KE, Soto CM, Blum AS, Chatterji A, Lin T, Johnson JE, Ligler FS, Ratna BR (2006) A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: application as an immunoassay tracer. Biosens Bioelectron 21(8):1668–1673. doi:10.1016/j.bios.2005.09.003. http://www.sciencedirect.com/science/article/pii/S0956566305002599

  • Schaeublin NM, Braydich-Stolle LK, Maurer EI, Park K, MacCuspie RI, Afrooz ARMN, Vaia RA, Saleh NB, Hussain SM (2012) Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model. Langmuir 28(6):3248–3258. doi:10.1021/la204081m. 10.1021/la204081m

  • Schlick TL, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127(11):3718–3723. doi:10.1021/ja046239n. 10.1021/ja046239n

  • Shojaei-Zadeh S, Morris JF, Couzis A, Maldarelli C (2011) Highly crosslinked poly(dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals. J Colloid Interface Sci 363:25

    Article  CAS  Google Scholar 

  • Soto CM, Blum AS, Vora GJ, Lebedev N, Meador CE, Won AP, Chatterji A, Johnson JE, Ratna BR (2006) Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J Am Chem Soc 128(15):5184–5189. doi:10.1021/ja058574x

  • Steinmetz NF, Ablack AL, Hickey JL, Ablack J, Manocha B, Mymryk JS, Luyt LG, Lewis JD (2011) Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing peptide receptors. Small 7(12):1664–1672. doi:10.1002/smll.201000435

  • Stockman MI (2008) Spasers explained. Nat Photon 2:327–329

    Article  CAS  Google Scholar 

  • Strangi G, De Luca A, Ravaine S, Ferrie M, Bartolino R (2011) Gain induced optical transparency in metamaterials. Appl Phys Lett 98:251912

    Article  Google Scholar 

  • Sun J, DuFort C, Daniel M-C, Murali A, Chen C, Gopinath K, Stein B, De M, Rotello VM, Holzenburg A, Kao CC, Dragnea B (2007) Core-controlled polymorphism in virus-like particles. Proc Natl Acad Sci 104(4):1354–1359. doi:10.1073/pnas.0610542104. http://www.pnas.org/content/104/4/1354.abstract

  • Tagaya M, Nakagawa M (2011) Incorporation of decanethiol-passivated gold nanoparticles into cross-linked poly(dimethylsiloxane) films. Smart Mater Res 7:390273

  • Tovmachenko OG, Graf C, van den Heuvel DJ, van Blaaderen A, Gerritsen HC (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mat 18:91–95

Download references

Acknowledgments

The research leading to these results has received support and funding from the Ohio Third Frontier Project Research Cluster on Surfaces in Advanced Materials (RC-SAM), the European Union’s Seventh Framework Programme (FP7/2008) METACHEM Project under Grant Agreement No. 228762 and from the Italian Project “NanoLase” - PRIN 2012, protocol number 2012JHFYMC. This work was partially supported by a grant from the National Science Foundation CMMI-1333651 to N.F.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De Luca.

Additional information

This contribution is the written, peer-reviewed version of one of the papers presented either at the roundtable From Life to Life: Through New Materials and Plasmonics, held at Accademia Nazionale dei Lincei in Rome on June 23, 2014, or at the International Conference NanoPlasm 2014: New Frontiers in Plasmonics and NanoOptics, held in Cetraro (CS) on June 16–20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Luca, A., Bartolino, R., Correa-Duarte, M.A. et al. Gain-assisted plasmonic metamaterials: mimicking nature to go across scales. Rend. Fis. Acc. Lincei 26 (Suppl 2), 161–174 (2015). https://doi.org/10.1007/s12210-015-0397-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0397-2

Keywords

Navigation