Skip to main content
Log in

Effects of Calcium Concentration in Potato Tuber Cells on the Formation of Cross-Links between Pectin Molecules by Ca2+

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The formation of cross-links between pectin molecules via Ca2+ in the potato tuber cell wall is a determinant factor on processing properties of potato and the quality of its products such as French fries. Thus, in this study, potato tubers varying significantly in their calcium concentrations were analyzed to investigate whether an increased absorption of calcium by a potato tuber led to an increase in the calcium concentration in the cell wall and how the calcium concentration in the cell wall influenced on the formation of cross-links between pectin molecules via Ca2+. Correlation analysis revealed that calcium absorbed by a potato tuber was bound to the cell wall as a water insoluble form 99 days after planting or later. Furthermore, with an increase in the calcium concentration in the cell wall, the content of chelator soluble pectin increased throughout tuber bulking and maturation stages. However, the degree of methylation was not a limiting factor in the formation of cross-links between pectin chains via Ca2+. Atomic force microscopy images of parenchyma cell walls prepared from mature potato tubers indicated an increase in the amount of calcium cross-linked pectin molecules with an increase in the calcium concentration in the cell wall. The present study demonstrated that the calcium concentration of the cell wall of potato tubers significantly affected the formation of cross-linkages between pectin molecules and, consequently, contributed to an enhanced formation of pectin-calcium networks in the cell wall.

Resumen

La formación de enlaces cruzados entre moléculas de pectina vía Ca2+ en la pared celular del tubérculo de papa es un factor determinante en las propiedades de procesamiento de la papa y en la calidad de sus productos, como las papas a la francesa. De aquí que, en este estudio, se analizaron tubérculos de papa que variaban significativamente en sus concentraciones de calcio, para investigar si un incremento en la absorción de este elemento por un tubérculo de papa conducía a un aumento en la concentración de calcio en la pared celular y como su concentración en la pared celular influenció en la formación de enlaces cruzados entre moléculas de pectina vía Ca2+. El análisis de correlación reveló que el calcio absorbido por un tubérculo de papa estaba unido a la pared celular como una forma insoluble al agua 99 días después de la siembra o después. Aún más, con un aumento en la concentración de calcio en la pared celular, el contenido de pectina quelante soluble aumentó a lo largo del crecimiento del tubérculo y de las etapas de maduración. No obstante, el grado de metilación no fue un factor limitante en la formación de enlaces cruzados entre cadenas de pectina vía Ca2+. Las imágenes de microscopía atómica forzada de paredes celulares del parénquima preparadas de tubérculos de papa maduros indicaron un aumento en la cantidad de moléculas de pectina de enlaces cruzados de calcio con un aumento en la concentración de calcio en la pared celular. El presente estudio demostró que la concentración de calcio de la pared celular de los tubérculos de papa afectó significativamente la formación de enlaces cruzados entre moléculas de pectinas, y consecuentemente, contribuyó a un aumento en la formación de redes de calcio-pectina en la pared celular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez, M.D., W. Canet, and M.E. Tortosa. 2001. Kinetics of thermal softening of potato tissue (cv. Monalisa) by water heating. European Food Research and Technology 212: 588–596. doi:10.1007/s002170100295.

    Article  CAS  Google Scholar 

  • Andersson, A., V. Gekas, I. Lind, F. Oliveira, R. Öste, and J.M. Aguilfra. 1994. Effect of preheating on potato texture. Critical Reviews in Food Science and Nutrition 34: 229–251. doi:10.1080/10408399409527662.

    Article  CAS  PubMed  Google Scholar 

  • Blumenkrantz, N., and G. Asboe-Hansen. 1973. New method for quantitative determination of uronic acids. Analytical Biochemistry 54: 484–489. doi:10.1016/0003-2697(73)90377-1.

    Article  CAS  PubMed  Google Scholar 

  • Braccini, I., and S. Pérez. 2001. Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules 2: 1089–1096. doi:10.1021/bm010008g.

    Article  CAS  PubMed  Google Scholar 

  • Burton, W.G. 1989. The potato. 3rd ed. Harlow: Longman Scientific and Technical.

    Google Scholar 

  • Bush, M.S., M. Marry, M.I. Huxham, M.C. Jarvis, and M.C. McCann. 2001. Developmental regulation of pectic epitopes during potato tuberisation. Planta 213: 869–880. doi:10.1007/s004250100570.

    Article  CAS  PubMed  Google Scholar 

  • Busse, J.S., and J.P. Palta. 2006. Investigating the in vivo calcium transport path to developing potato tuber using 45Ca: A new concept in potato tuber calcium nutrition. Physiologia Plantarum 128: 313–323. doi:10.1111/j.1399-3054.2006.00741.x.

    Article  CAS  Google Scholar 

  • Caffall, K.H., and D. Mohnen. 2009. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research 344: 1879–1900. doi:10.1016/j.carres.2009.05.021.

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas-Pérez, S., J.J. Chanona-Pérez, J.V. Méndez-Méndez, G. Calderón-Domínguez, R. López-Santiago, and I. Arzate-Vázquez. 2016. Nanoindentation study on apple tissue and isolated cells by atomic force microscopy, image and fractal analysis. Innovative Food Science and Emerging Technologies 34: 234–242. doi:10.1016/j.ifset.2016.02.004.

    Article  Google Scholar 

  • Cybulska, J., A. Zdunek, K.M. Psonka-Antonczyk, and B.T. Stokke. 2013. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope. Carbohydrate Polymers 92: 128–137. doi:10.1016/j.carbpol.2012.08.103.

    Article  CAS  PubMed  Google Scholar 

  • van Dijk, C., J.G. Beekhuizen, T. Gibcens, C. Boeriu, M. Fischer, and T. Stolle-Smits. 2002. Texture of cooked potatoes (Solanum tuberosum). 2. Changes in pectin composition during storage of potatoes. Journal of Agricultural and Food Chemistry 50: 5089–5097. doi:10.1021/jf011510v.

    Article  PubMed  Google Scholar 

  • Ding, S., and M.E. Himmel. 2006. The maize primary cell wall microfibril: A new model derived from direct visualization. Journal of Agricultural and Food Chemistry 54: 597–606. doi:10.1021/jf051851z.

    Article  CAS  PubMed  Google Scholar 

  • Filisetti-Cozzi, T.M.C.C., and N.C. Carpita. 1991. Measurement of uronic-acids without interference from neutral sugars. Analytical Biochemistry 197: 157–162. doi:10.1016/0003-2697(91)90372-Z.

    Article  CAS  PubMed  Google Scholar 

  • Fraeye, I., T. Duvetter, E. Doungla, A.V. Loey, and M. Hendrickx. 2010. Fine-tuning the properties of pectin-calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends in Food Science & Technology 21: 219–228. doi:10.1016/j.tifs.2010.02.001.

    Article  CAS  Google Scholar 

  • Fueki, N., K. Sato, H. Takeuchi, H. Sato, S. Nakatsu, and J. Kato. 2011. Prediction of nitrogen uptake by sugar beet (Beta vulgaris L.) by scoring organic matter and nitrogen management (N-score), in Hokkaido, Japan. Soil Science and Plant Nutrition 57: 411–420. doi:10.1080/00380768.2011.590942.

    Article  CAS  Google Scholar 

  • Fuentes, A., J.L. Vázquez-Gutiérrez, M.B. Pérez-Gago, E. Vonasek, N. Nitin, and D.M. Barrett. 2014. Application of nondestructive impedance spectroscopy to determination of the effect of temperature on potato microstructure and texture. Journal of Food Engineering 133: 16–22. doi:10.1016/j.jfoodeng.2014.02.016.

    Article  Google Scholar 

  • Gibson, L.J. 2012. The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface 9: 2749–2766. doi:10.1098/rsif.2012.0341.

    Article  CAS  PubMed Central  Google Scholar 

  • Grant, G.T., E.R. Morris, D.A. Rees, P.J.C. Smith, and D. Thom. 1973. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Letters 32: 195–198. doi:10.1016/0014-5793(73)80770-7.

    Article  CAS  Google Scholar 

  • He, C., J. Ma, and L. Wang. 2015. A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytologist 206: 1051–1062. doi:10.1111/nph.13282.

    Article  CAS  PubMed  Google Scholar 

  • Hoff, J.E., and M.D. Castro. 1969. Chemical composition of potato cell wall. Journal of Agricultural and Food Chemistry 17: 1328–1331. doi:10.1021/jf60166a058.

    Article  CAS  Google Scholar 

  • Hokkaido Department for Agropolicy. 2010. Hokkaido fertilizer application guide. Sapporo: Hokkaido Prefecture Press.

    Google Scholar 

  • Ishii, T. 1997. O-acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiology 113: 1265–1272. doi:10.1104/pp.113.4.1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis, M.C. 1982. The proportion of calcium-bound pectin in plant cell walls. Planta 154: 344–346. doi:10.1007/BF00393913.

    Article  CAS  PubMed  Google Scholar 

  • Jarvis, M.C., M.A. Hall, D.R. Threlfall, and J. Friend. 1981. The polysaccharide structure of potato cell walls: Chemical fractionation. Planta 152: 93–100. doi:10.1007/BF00391179.

    Article  CAS  PubMed  Google Scholar 

  • Jarvis, M.C., S.P.H. Briggs, and J.P. Knox. 2003. Intercellular adhesion and cell separation in plants. Plant, Cell and Environment. 26: 977–989. doi:10.1046/j.1365-3040.2003.01034.x.

    Article  Google Scholar 

  • Khalil, A. 1999. Quality of French fried potatoes as influenced by coating with hydrocolloids. Food Chemistry 66: 201–208. doi:10.1016/S0308-8146(99)00045-X.

    Article  CAS  Google Scholar 

  • Kim, J.B., and N.C. Carpita. 1992. Changes in esterification of the uronic acid groups of cell wall polysaccharides during elongation of maize coleoptiles. Plant Physiology 98: 646–653. doi:10.1104/pp.98.2.646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby, A.R., A.P. Gunning, K.W. Waldron, V.J. Morris, and A. Ng. 1996. Visualization of plant cell walls by atomic force microscopy. Biophysical Journal 70: 1138–1143. doi:10.1016/S0006-3495(96)79708-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby, A.R., A. Ng, K.W. Waldron, and V.J. Morris. 2006. AFM investigations of cellulose fibers in Bintje potato (Solanum tuberosum L.) cell wall fragments. Food Biophysics 1: 163–167. doi:10.1007/s11483-006-9013-4.

    Article  Google Scholar 

  • Kleinhenz, M.D., J.P. Palta, and C.C. Gunter. 1999. Impact of source and timing of calcium and nitrogen applications on “Atlantic” potato tuber calcium concentrations and internal quality. Journal of American Society for Horticultural Science 124: 498–506.

    Google Scholar 

  • Kratzke, M.G., and J.P. Palta. 1985. Evidence for the existence of functional roots on potato tubers and stolons: Significance in water transport to the tuber. American Journal of Potato Research. 62: 227–236. doi:10.1007/BF02852802.

    Article  Google Scholar 

  • Kratzke, M.G., and J.P. Palta. 1986. Calcium accumulation in potato-tubers: Role of the basal roots. Hortscience 21: 1022–1024.

    CAS  Google Scholar 

  • MacKinnon, I.M., W.G. Jardine, N. O’Kennedy, C.M.G.C. Renard, and M.C. Jarvis. 2002. Pectic methyl and nonmethyl esters in potato cell walls. Journal of Agricultural and Food Chemistry 50: 342–346. doi:10.1021/jf010597h.

    Article  CAS  PubMed  Google Scholar 

  • van Marle, J.T., T. Stolle-Smits, J. Donkers, C. van Dijk, A.G.J. Voragen, and K. Recourt. 1997a. Chemical and microscopic characterization of potato (Solanum tuberosum L.) cell walls during cooking. Journal of Agricultural and Food Chemistry 8561: 50–58. doi:10.1021/jf960085g.

    Article  Google Scholar 

  • van Marle, J.T., K. Recourt, C. van Dijk, H.A. Schols, and A.G.J. Voragen. 1997b. Structural features of cell walls from potato (Solanum tuberosum L.) cultivars Irene and Nicola. Journal of Agricultural and Food Chemistry 45: 1686–1693. doi:10.1021/jf9607627.

    Article  Google Scholar 

  • Matsuura-Endo, C., A. Ohara-Takada, H. Yamauchi, Y. Mukasa, M. Mori, and K. Ishibashi. 2002. Disintegration differences in cooked potatoes from three Japanese cultivars: Comparison of the properties of isolated starch, degree of cell separation with EDTA, and contents of calcium and galacturonic acid. Food Science and Technology Research 8: 323–327. doi:10.3136/fstr.8.323.

    Article  CAS  Google Scholar 

  • McGuire, R.G., and A. Kelman. 1984. Reduced severity of Erwinia soft rot in potato tubers with increased calcium content. Phytopathology 74: 1250–1256.

    Article  CAS  Google Scholar 

  • Melton, L.D., and B.G. Smith. 2001. Isolation of plant cell walls and fractionation of cell wall polysaccharides. In Current protocols in food analytical chemistry. Hoboken: John Wiley & Sons, Inc.. doi:10.1002/0471142913.fae0301s00.

    Google Scholar 

  • Micheli, F. 2001. Pectin methylesterases: Cell wall enzymes with important roles in plant physiology. Trends in Plant Science 6: 414–419. doi:10.1016/S1360-1385(01)02045-3.

    Article  CAS  PubMed  Google Scholar 

  • Moledina, K.H., M. Haydar, B. Ooraikul, and D. Hadziyev. 1981. Pectin changes in the pre-cooking step of dehydrated mashed potato production. Journal of the Science of Food and Agriculture 32: 1091–1102. doi:10.1002/jsfa.2740321108.

    Article  CAS  Google Scholar 

  • Morris, V.J., A.P. Gunning, A.R. Kirby, A. Round, K. Waldron, and A. Ng. 1997. Atomic force microscopy of plant cell walls, plant cell wall polysaccharides and gels. International Journal of Biological Macromolecules 21: 61–66. doi:10.1016/S0141-8130(97)00042-1.

    Article  CAS  PubMed  Google Scholar 

  • Murayama, D., Y. Sakashita, T. Yamazawa, K. Nakata, Y. Shinbayashi, J.P. Palta, M. Tani, H. Yamauchi, and H. Koaze. 2016. Effect of calcium fertilization on processing properties and storability of frozen French fries. Food Science and Technology Research 22: 451–459. doi:10.3136/fstr.22.451.

    Article  CAS  Google Scholar 

  • Ng, A., and K.W. Waldron. 1997. Effect of steaming on cell wall chemistry of potatoes (Solanum tuberosum Cv. Bintje) in relation to firmness. Journal of Agricultural and Food Chemistry 45: 3411–3418. doi:10.1021/jf960995y.

    Article  CAS  Google Scholar 

  • Orfila, C., and J.P. Knox. 2000. Spatial regulation of pectic polysaccharides in relation to pit fields in cell walls of tomato fruit pericarp. Plant Physiology 122: 775–781. doi:10.1104/pp.122.3.775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ormerod, A., J. Ralfs, S. Jobling, and M. Gidley. 2002. The influence of starch swelling on the material properties of cooked potatoes. Journal of Materials Science 37: 1667–1673. doi:10.1023/A:1014965202596.

    Article  CAS  Google Scholar 

  • Ozgen, S., and J.P. Palta. 2004. Supplemental calcium application influences potato tuber number and size. Hortscience 40: 102–105.

    Google Scholar 

  • Ross, H.A., W.L. Morris, L.J.M. Ducreux, R.D. Hancock, S.R. Verrall, J.A. Morris, G.A. Tucker, D. Stewart, P.E. Hedley, G.J. McDougall, and M.A. Taylor. 2011. Pectin engineering to modify product quality in potato. Plant Biotechnology Journal 9: 848–856. doi:10.1111/j.1467-7652.2011.00591.x.

    Article  CAS  PubMed  Google Scholar 

  • Selvendran, R.R., and M.A. O’Neill. 1987. Isolation and analysis of cell walls from plant material. In Methods of biochemical analysis, 32:25–153. New York: Wiley. doi:10.1002/9780470110539.ch2.

  • Sriamornsak, P. 2003. Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn University International Journal 3: 207–228.

    Google Scholar 

  • Subramanian, N.K., P.J. White, M.R. Broadley, and G. Ramsay. 2011. The three-dimensional distribution of minerals in potato tubers. Annals of Botany 107: 681–691. doi:10.1093/aob/mcr009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tajner-Czopek, A. 2003. Changes of pectic substances concentration in potatoes and French fries and the effect of these substances on the texture of the final product. Nahrung/Food 47: 228–231. doi:10.1002/food.200390053.

    Article  CAS  PubMed  Google Scholar 

  • Thakur, B.R., R.K. Singh, and A.K. Handa. 1997. Chemistry and uses of pectin – a review. Critical Reviews in Food Science and Nutrition 37: 47–73. doi:10.1080/10408399709527767.

    Article  CAS  PubMed  Google Scholar 

  • Thimm, J.C., D.J. Burritt, W.A. Ducker, and L.D. Melton. 2009. Pectins influence microfibril aggregation in celery cell walls: An atomic force microscopy study. Journal of Structural Biology 168: 337–344. doi:10.1016/j.jsb.2009.06.017.

    Article  CAS  PubMed  Google Scholar 

  • Tibbits, C.W., A.J. MacDougall, and S.G. Ring. 1998. Calcium binding and swelling behaviour of a high methoxyl pectin gel. Carbohydrate Research 310: 101–107. doi:10.1016/S0008-6215(98)00172-4.

    Article  CAS  Google Scholar 

  • Vicente, A.R., M.L. Costa, G.A. Martínez, A.R. Chaves, and P.M. Civello. 2005. Effect of heat treatments on cell wall degradation and softening in strawberry fruit. Postharvest Biology and Technology 38: 213–222. doi:10.1016/j.postharvbio.2005.06.005.

    Article  CAS  Google Scholar 

  • Wood, P.J., and I.R. Siddiqui. 1971. Determination of methanol and its application to measurement of pectin ester content and pectin methyl esterase activity. Analytical Biochemistry 39: 418–428. doi:10.1016/0003-2697(71)90432-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mr. Naoki Moriura and his family who provided the potato samples for this research. We would like to thank Dr. Naomichi Baba, Dr. Hiroko Tada and Dr. Tetsuya Uchida from Okayama University for their help with the AFM experiment. We also thank Dr. Jun Kasuga, Dr. Yoshihiko Tokuji, Dr. Takuji Ohwada and Dr. Daisuke Kondo from Obihiro University of Agriculture and Veterinary Medicine for their valuable suggestion and technical assistance on the microscopic observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Koaze.

Ethics declarations

Disclosure

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murayama, D., Tani, M., Ikeda, S. et al. Effects of Calcium Concentration in Potato Tuber Cells on the Formation of Cross-Links between Pectin Molecules by Ca2+ . Am. J. Potato Res. 94, 524–533 (2017). https://doi.org/10.1007/s12230-017-9589-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-017-9589-x

Keywords

Navigation