Skip to main content

Advertisement

Log in

Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The P2X4 receptor (P2X4) is an ATP-gated cation channel that is highly permeable to Ca2+ and widely expressed in neuronal and glial cell types throughout the central nervous system (CNS). A growing body of evidence indicates that P2X4 plays key roles in numerous central disorders. P2X4 trafficking is highly regulated and consequently in normal situations, P2X4 is present on the plasma membrane at low density and found mostly within intracellular endosomal/lysosomal compartments. An increase in the de novo expression and/or surface density of P2X4 has been observed in microglia and/or neurons during pathological states. This review aims to summarize knowledge on P2X4 functions in CNS disorders and provide some insights into the relative contributions of neuronal and glial P2X4 in pathological contexts. However, determination of the cell-specific functions of P2X4 along with its intracellular and cell surface roles remain to be elucidated before its potential as a therapeutic target in multiple disorders can be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. North RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci 2016, 371.

  2. Holton P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol 1959, 145: 494–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Burnstock G. Purinergic nerves. Pharmacol Rev 1972, 24: 509–581.

    CAS  PubMed  Google Scholar 

  4. Khakh BS, North RA. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron 2012, 76: 51–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pankratov Y, Lalo U, Verkhratsky A, North RA. Vesicular release of ATP at central synapses. Pflugers Arch 2006, 452: 589–597.

    CAS  PubMed  Google Scholar 

  6. Boué-Grabot E, Pankratov Y. Modulation of central synapses by astrocyte-released ATP and postsynaptic P2X receptors. Neural Plast 2017, 2017: 9454275.

    PubMed  PubMed Central  Google Scholar 

  7. Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, et al. Microglia release ATP by exocytosis. Glia 2013, 61: 1320–1330.

    PubMed  Google Scholar 

  8. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: An overview. Trends Neurosci 2009, 32: 19–29.

    CAS  PubMed  Google Scholar 

  9. Rodrigues RJ, Tome AR, Cunha RA. ATP as a multi-target danger signal in the brain. Front Neurosci 2015, 9: 148.

    PubMed  PubMed Central  Google Scholar 

  10. Pougnet JT, Toulme E, Martinez A, Choquet D, Hosy E, Boue-Grabot E. ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons. Neuron 2014, 83: 417–430.

    CAS  PubMed  Google Scholar 

  11. Pougnet JT, Compans B, Martinez A, Choquet D, Hosy E, Boue-Grabot E. P2X-mediated AMPA receptor internalization and synaptic depression is controlled by two CaMKII phosphorylation sites on GluA1 in hippocampal neurons. Sci Rep 2016, 6: 31836.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Suurvali J, Boudinot P, Kanellopoulos J, Ruutel Boudinot S. P2X4: A fast and sensitive purinergic receptor. Biomed J 2017, 40: 245–256.

    PubMed  PubMed Central  Google Scholar 

  13. Rubio ME, Soto F. Distinct Localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 2001, 21: 641–653.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Soto F, Garcia-Guzman M, Karschin C, Stuhmer W. Cloning and tissue distribution of a novel P2X receptor from rat brain. Biochem Biophys Res Commun 1996, 223: 456–460.

    CAS  PubMed  Google Scholar 

  15. Werner S, Mesch S, Hillig RC, Ter Laak A, Klint J, Neagoe I, et al. Discovery and characterization of the potent and selective P2X4 inhibitor N-[4-(3-Chlorophenoxy)-3-sulfamoylphenyl]-2-phenylacetamide (BAY-1797) and structure-guided amelioration of its CYP3A4 induction profile. J Med Chem 2019, 62: 11194–11217.

    CAS  PubMed  Google Scholar 

  16. Matsumura Y, Yamashita T, Sasaki A, Nakata E, Kohno K, Masuda T, et al. A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Sci Rep 2016, 6: 32461.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ase AR, Honson NS, Zaghdane H, Pfeifer TA, Seguela P. Identification and characterization of a selective allosteric antagonist of human P2X4 receptor channels. Mol Pharmacol 2015, 87: 606–616.

    CAS  PubMed  Google Scholar 

  18. Twum-Danso NA. Serious adverse events following treatment with ivermectin for onchocerciasis control: A review of reported cases. Filaria J 2003, 2 Suppl 1: S3.

    PubMed  PubMed Central  Google Scholar 

  19. Khakh BS, Proctor WR, Dunwiddie TV, Labarca C, Lester HA. Allosteric control of gating and kinetics at P2X(4) receptor channels. J Neurosci 1999, 19: 7289–7299.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Silberberg SD, Li M, Swartz KJ. Ivermectin Interaction with transmembrane helices reveals widespread rearrangements during opening of P2X receptor channels. Neuron 2007, 54: 263–274.

    CAS  PubMed  Google Scholar 

  21. Stokes L. Rab5 regulates internalisation of P2X4 receptors and potentiation by ivermectin. Purinergic Signal 2012.

  22. Toulme E, Soto F, Garret M, Boue-Grabot E. Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin. Mol Pharmacol 2006, 69: 576–587.

    CAS  PubMed  Google Scholar 

  23. Robinson LE, Murrell-Lagnado RD. The trafficking and targeting of P2X receptors. Front Cell Neurosci 2013, 7: 233.

    PubMed  PubMed Central  Google Scholar 

  24. Murrell-Lagnado RD. A role for P2X4 receptors in lysosome function. J Gen Physiol 2018, 150: 185–187.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 2008, 7: 575–590.

    CAS  PubMed  Google Scholar 

  26. Brake AJ, Wagenbach MJ, Julius D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 1994, 371: 519–523.

    CAS  PubMed  Google Scholar 

  27. Kawate T, Michel JC, Birdsong WT, Gouaux E. Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 2009, 460: 592–598.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hattori M, Gouaux E. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 2012, 485: 207–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mansoor SE, Lu W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E. X-ray structures define human P2X(3) receptor gating cycle and antagonist action. Nature 2016, 538: 66–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Igawa T, Abe Y, Tsuda M, Inoue K, Ueda T. Solution structure of the rat P2X4 receptor head domain involved in inhibitory metal binding. FEBS Lett 2015, 589: 680–686.

    CAS  PubMed  Google Scholar 

  31. Chaumont S, Jiang LH, Penna A, North RA, Rassendren F. Identification of a trafficking motif involved in the stabilization and polarization of P2X receptors. J Biol Chem 2004, 279: 29628–29638.

    CAS  PubMed  Google Scholar 

  32. Boue-Grabot E, Archambault V, Seguela P. A protein kinase C site highly conserved in P2X subunits controls the desensitization kinetics of P2X(2) ATP-gated channels. J Biol Chem 2000, 275: 10190–10195.

    CAS  PubMed  Google Scholar 

  33. Qureshi OS, Paramasivam A, Yu JC, Murrell-Lagnado RD. Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J Cell Sci 2007, 120: 3838–3849.

    CAS  PubMed  Google Scholar 

  34. Bobanovic LK, Royle SJ, Murrell-Lagnado RD. P2X receptor trafficking in neurons is subunit specific. J Neurosci 2002, 22: 4814–4824.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Royle SJ, Bobanovic LK, Murrell-Lagnado RD. Identification of a non-canonical tyrosine-based endocytic motif in an ionotropic receptor. J Biol Chem 2002, 277: 35378–35385.

    CAS  PubMed  Google Scholar 

  36. Jo YH, Donier E, Martinez A, Garret M, Toulme E, Boue-Grabot E. Cross-talk between P2X4 and gamma-aminobutyric acid, type A receptors determines synaptic efficacy at a central synapse. J Biol Chem 2011, 286: 19993–20004.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Boumechache M, Masin M, Edwardson JM, Gorecki DC, Murrell-Lagnado R. Analysis of assembly and trafficking of native P2X4 and P2X7 receptor complexes in rodent immune cells. J Biol Chem 2009, 284: 13446–13454.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Royle SJ, Qureshi OS, Bobanovic LK, Evans PR, Owen DJ, Murrell-Lagnado RD. Non-canonical YXXGPhi endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors. J Cell Sci 2005, 118: 3073–3080.

    CAS  PubMed  Google Scholar 

  39. Xu J, Chai H, Ehinger K, Egan TM, Srinivasan R, Frick M, et al. Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin. J Gen Physiol 2014, 144: 81–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Toulme E, Garcia A, Samways D, Egan TM, Carson MJ, Khakh BS. P2X4 receptors in activated C8-B4 cells of cerebellar microglial origin. J Gen Physiol 2010, 135: 333–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stokes L, Surprenant A. Dynamic regulation of the P2X4 receptor in alveolar macrophages by phagocytosis and classical activation. Eur J Immunol 2009, 39: 986–995.

    CAS  PubMed  Google Scholar 

  42. Trang T, Salter MW. P2X4 purinoceptor signaling in chronic pain. Purinergic Signal 2012, 8: 621–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Murrell-Lagnado RD, Frick M. P2X4 and lysosome fusion. Curr Opin Pharmacol 2019, 47: 126–132.

    CAS  PubMed  Google Scholar 

  44. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, et al. Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 2007, 9: 945–953.

    CAS  PubMed  Google Scholar 

  45. Besnard A, Gautherot J, Julien B, Tebbi A, Garcin I, Doignon I, et al. The P2X4 purinergic receptor impacts liver regeneration after partial hepatectomy in mice through the regulation of biliary homeostasis. Hepatology 2016, 64: 941–953.

    CAS  PubMed  Google Scholar 

  46. Cao Q, Zhong XZ, Zou Y, Murrell-Lagnado R, Zhu MX, Dong XP. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J Cell Biol 2015, 209: 879–894.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bo X, Kim M, Nori SL, Schoepfer R, Burnstock G, North RA. Tissue distribution of P2X4 receptors studied with an ectodomain antibody. Cell Tissue Res 2003, 313: 159–165.

    CAS  PubMed  Google Scholar 

  48. Seguela P, Haghighi A, Soghomonian JJ, Cooper E. A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J Neurosci 1996, 16: 448–455.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lê KT, Villeneuve P, Ramjaun AR, McPherson PS, Beaudet A, Seguela P. Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 1998, 83: 177–190.

    PubMed  Google Scholar 

  50. Amadio S, Montilli C, Picconi B, Calabresi P, Volonte C. Mapping P2X and P2Y receptor proteins in striatum and substantia nigra: An immunohistological study. Purinergic Signal 2007, 3: 389–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Stojilkovic SS. Purinergic regulation of hypothalamopituitary functions. Trends Endocrinol Metab 2009, 20: 460–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lalo U, Verkhratsky A, Pankratov Y. Ivermectin potentiates ATP-induced ion currents in cortical neurones: evidence for functional expression of P2X4 receptors? Neurosci Lett 2007, 421: 158–162.

    CAS  PubMed  Google Scholar 

  53. Tan Y, Zhao B, Zeng QC, Shi CM, Zhao FB, Li ZW. Characteristics of ATP-activated current in nodose ganglion neurons of rats. Neurosci Lett 2009, 459: 25–29.

    CAS  PubMed  Google Scholar 

  54. Luo J, Yin GF, Gu YZ, Liu Y, Dai JP, Li C, et al. Characterization of three types of ATP-activated current in relation to P2X subunits in rat trigeminal ganglion neurons. Brain Res 2006, 1115: 9–15.

    CAS  PubMed  Google Scholar 

  55. Ito K, Chihara Y, Iwasaki S, Komuta Y, Sugasawa M, Sahara Y. Functional ligand-gated purinergic receptors (P2X) in rat vestibular ganglion neurons. Hear Res 2010, 267: 89–95.

    CAS  PubMed  Google Scholar 

  56. Wheeler-Schilling TH, Marquordt K, Kohler K, Guenther E, Jabs R. Identification of purinergic receptors in retinal ganglion cells. Brain Res Mol Brain Res 2001, 92: 177–180.

    CAS  PubMed  Google Scholar 

  57. Sim JA, Chaumont S, Jo J, Ulmann L, Young MT, Cho K, et al. Altered hippocampal synaptic potentiation in P2X4 knock-out mice. J Neurosci 2006, 26: 9006–9009.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu J, Bernstein AM, Wong A, Lu XH, Khoja S, Yang XW, et al. P2X4 receptor reporter mice: Sparse brain expression and feeding-related presynaptic facilitation in the arcuate nucleus. J Neurosci 2016, 36: 8902–8920.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bertin E, Deluc T, Pilch KS, Martinez A, Pougnet JT, Doudnikoff E, et al. Increased surface P2X4 receptor regulates anxiety and memory in P2X4 internalization-defective knock-in mice. Mol Psychiatry 2020.

  60. Le KT, Babinski K, Seguela P. Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 1998, 18: 7152–7159.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Antonio LS, Stewart AP, Varanda WA, Edwardson JM. Identification of P2X2/P2X4/P2X6 heterotrimeric receptors using atomic force microscopy (AFM) imaging. FEBS Lett 2014, 588: 2125–2128.

    CAS  PubMed  Google Scholar 

  62. Lalo U, Palygin O, Verkhratsky A, Grant SG, Pankratov Y. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci Rep 2016, 6: 33609.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009, 61: 340–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A. P2X receptors and synaptic plasticity. Neuroscience 2009, 158: 137–148.

    CAS  PubMed  Google Scholar 

  65. Baxter AW, Choi SJ, Sim JA, North RA. Role of P2X4 receptors in synaptic strengthening in mouse CA1 hippocampal neurons. Eur J Neurosci 2011, 34: 213–220.

    PubMed  PubMed Central  Google Scholar 

  66. Jo YH, Boue-Grabot E. Interplay between ionotropic receptors modulates inhibitory synaptic strength. Commun Integr Biol 2011, 4: 706–709.

    PubMed  PubMed Central  Google Scholar 

  67. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 2014, 12: e1001747.

    PubMed  PubMed Central  Google Scholar 

  68. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB. ATP released from astrocytes mediates glial calcium waves. J Neurosci 1999, 19: 520–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Craigie E, Birch RE, Unwin RJ, Wildman SS. The relationship between P2X4 and P2X7: a physiologically important interaction? Front Physiol 2013, 4: 216.

    PubMed  PubMed Central  Google Scholar 

  70. Kukley M, Barden JA, Steinhauser C, Jabs R. Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 2001, 36: 11–21.

    CAS  PubMed  Google Scholar 

  71. Franke H, Grosche J, Schadlich H, Krugel U, Allgaier C, Illes P. P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 2001, 108: 421–429.

    CAS  PubMed  Google Scholar 

  72. Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 Receptor function in the nervous system and current breakthroughs in pharmacology. Front Pharmacol 2017, 8: 291.

    PubMed  PubMed Central  Google Scholar 

  73. Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry 2020, 25: 351–367.

    PubMed  Google Scholar 

  74. Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcao A, Xiao L, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 2016, 352: 1326–1329.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. John Lin CC, Yu K, Hatcher A, Huang TW, Lee HK, Carlson J, et al. Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci 2017, 20: 396–405.

    CAS  PubMed  Google Scholar 

  76. Deng Z, Li C, Du E, Liu C, Xia B, Chen H, et al. Catestatin enhances neuropathic pain mediated by P2X4 receptor of dorsal root ganglia in a rat model of chronic constriction injury. Cell Physiol Biochem 2018, 51: 812–826.

    CAS  PubMed  Google Scholar 

  77. Teixeira JM, Dos Santos GG, Neves AF, Athie MCP, Bonet IJM, Nishijima CM, et al. Diabetes-induced neuropathic mechanical hyperalgesia depends on P2X4 receptor activation in dorsal root ganglia. Neuroscience 2019, 398: 158–170.

    CAS  PubMed  Google Scholar 

  78. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Volonte C, Aloisi F, et al. ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Res Brain Res Rev 2005, 48: 157–165.

    CAS  PubMed  Google Scholar 

  79. Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, et al. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 2007, 27: 9525–9533.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Su WF, Wu F, Jin ZH, Gu Y, Chen YT, Fei Y, et al. Overexpression of P2X4 receptor in Schwann cells promotes motor and sensory functional recovery and remyelination via BDNF secretion after nerve injury. Glia 2019, 67: 78–90.

    PubMed  Google Scholar 

  81. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 2010, 11: 823–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009, 139: 267–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ji RR. Recent progress in understanding the mechanisms of pain and itch: the second special issue. Neurosci Bull 2018, 34: 1–3.

    PubMed  PubMed Central  Google Scholar 

  84. Inoue K. Role of the P2X4 receptor in neuropathic pain. Curr Opin Pharmacol 2019, 47: 33–39.

    CAS  PubMed  Google Scholar 

  85. Gilmore SA. Proliferation of non-neuronal cells in spinal cords of irradiated, immature rats following transection of the sciatic nerve. Anat Rec 1975, 181: 799–811.

    CAS  PubMed  Google Scholar 

  86. Gilmore SA, Skinner RD. Intraspinal non-neuronal cellular responses to peripheral nerve injury. Anat Rec 1979, 194: 369–387.

    CAS  PubMed  Google Scholar 

  87. Masuda J, Tsuda M, Tozaki-Saitoh H, Inoue K. Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia. Mol Pain 2009, 5: 23.

    PubMed  PubMed Central  Google Scholar 

  88. Tanga FY, Nutile-McMenemy N, DeLeo JA. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 2005, 102: 5856–5861.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003, 424: 778–783.

    CAS  PubMed  Google Scholar 

  90. Tsuda M, Toyomitsu E, Kometani M, Tozaki-Saitoh H, Inoue K. Mechanisms underlying fibronectin-induced up-regulation of P2X4R expression in microglia: distinct roles of PI3K-Akt and MEK-ERK signalling pathways. J Cell Mol Med 2009, 13: 3251–3259.

    PubMed  PubMed Central  Google Scholar 

  91. Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 2008, 28: 11263–11268.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021.

    CAS  PubMed  Google Scholar 

  93. Trang T, Beggs S, Wan X, Salter MW. P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 2009, 29: 3518–3528.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK, et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 2015, 18: 1081–1083.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakatsuka T, Gu JG. ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J Neurosci 2001, 21: 6522–6531.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jo YH, Schlichter R. Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 1999, 2: 241–245.

    CAS  PubMed  Google Scholar 

  97. Masuda T, Ozono Y, Mikuriya S, Kohro Y, Tozaki-Saitoh H, Iwatsuki K, et al. Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat Commun 2016, 7: 12529.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Boue-Grabot E, Toulme E, Emerit MB, Garret M. Subunit-specific coupling between gamma-aminobutyric acid type A and P2X2 receptor channels. J Biol Chem 2004, 279: 52517–52525.

    CAS  PubMed  Google Scholar 

  99. Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, et al. IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep 2012, 1: 334–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Masuda T, Iwamoto S, Yoshinaga R, Tozaki-Saitoh H, Nishiyama A, Mak TW, et al. Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain. Nat Commun 2014, 5: 3771.

    CAS  PubMed  Google Scholar 

  101. Tsuda M, Toyomitsu E, Komatsu T, Masuda T, Kunifusa E, Nasu-Tada K, et al. Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia 2008, 56: 579–585.

    PubMed  Google Scholar 

  102. Toyomitsu E, Tsuda M, Yamashita T, Tozaki-Saitoh H, Tanaka Y, Inoue K. CCL2 promotes P2X4 receptor trafficking to the cell surface of microglia. Purinergic Signal 2012, 8: 301–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mapplebeck JC, Beggs S, Salter MW. Sex differences in pain: a tale of two immune cells. Pain 2016, 157 Suppl 1: S2–S6.

    PubMed  Google Scholar 

  104. Tsuda M. Modulation of pain and itch by spinal glia. Neurosci Bull 2018, 34: 178–185.

    PubMed  Google Scholar 

  105. Jin XH, Wang LN, Zuo JL, Yang JP, Liu SL. P2X4 receptor in the dorsal horn partially contributes to brain-derived neurotrophic factor oversecretion and toll-like receptor-4 receptor activation associated with bone cancer pain. J Neurosci Res 2014, 92: 1690–1702.

    CAS  PubMed  Google Scholar 

  106. Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, et al. Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 1996, 16: 2495–2507.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Toulme E, Tsuda M, Khakh BS, Inoue K. On the role of ATP-Gated P2X receptors in acute, inflammatory and neuropathic pain. Translational Pain Research: From Mouse to Man 2010.

  108. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 2015, 18: 145–153.

    CAS  PubMed  Google Scholar 

  109. Lalisse S, Hua J, Lenoir M, Linck N, Rassendren F, Ulmann L. Sensory neuronal P2RX4 receptors controls BDNF signaling in inflammatory pain. Sci Rep 2018, 8: 964.

    PubMed  PubMed Central  Google Scholar 

  110. Kobayashi K, Yamanaka H, Noguchi K. Expression of ATP receptors in the rat dorsal root ganglion and spinal cord. Anat Sci Int 2013, 88: 10–16.

    CAS  PubMed  Google Scholar 

  111. Ying M, Liu H, Zhang T, Jiang C, Gong Y, Wu B, et al. Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia. Neurochem Int 2017, 108: 27–33.

    CAS  PubMed  Google Scholar 

  112. Kushnir R, Cherkas PS, Hanani M. Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: a calcium imaging study. Neuropharmacology 2011, 61: 739–746.

    CAS  PubMed  Google Scholar 

  113. Yuan H, Ouyang S, Yang R, Li S, Gong Y, Zou L, et al. Osthole alleviated diabetic neuropathic pain mediated by the P2X4 receptor in dorsal root ganglia. Brain Res Bull 2018, 142: 289–296.

    CAS  PubMed  Google Scholar 

  114. Zhang H, Mei X, Zhang P, Ma C, White FA, Donnelly DF, et al. Altered functional properties of satellite glial cells in compressed spinal ganglia. Glia 2009, 57: 1588–1599.

    PubMed  PubMed Central  Google Scholar 

  115. Hanani M, Blum E, Liu S, Peng L, Liang S. Satellite glial cells in dorsal root ganglia are activated in streptozotocin-treated rodents. J Cell Mol Med 2014, 18: 2367–2371.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ulmann L, Hirbec H, Rassendren F. P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 2010, 29: 2290–2300.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Aby F, Whitestone S, Landry M, Ulmann L, Fossat P. Inflammatory-induced spinal dorsal horn neurons hyperexcitability is mediated by P2X4 receptors. Pain Rep 2018, 3: e660.

    PubMed  PubMed Central  Google Scholar 

  118. Zhang W, Liu LY, Xu TL. Reduced potassium-chloride co-transporter expression in spinal cord dorsal horn neurons contributes to inflammatory pain hypersensitivity in rats. Neuroscience 2008, 152: 502–510.

    CAS  PubMed  Google Scholar 

  119. Zhao S, Zhou Y, Fan Y, Gong Y, Yang J, Yang R, et al. Involvement of purinergic 2X4 receptor in glycoprotein 120-induced pyroptosis in dorsal root ganglia. J Neurochem 2019, 151: 584–594.

    CAS  PubMed  Google Scholar 

  120. Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache 2006, 46 Suppl 4: S182–191.

    PubMed  Google Scholar 

  121. Long T, He W, Pan Q, Zhang S, Zhang Y, Liu C, et al. Microglia P2X4 receptor contributes to central sensitization following recurrent nitroglycerin stimulation. J Neuroinflammation 2018, 15: 245.

    PubMed  PubMed Central  Google Scholar 

  122. Martins LB, Teixeira AL, Domingues RB. Neurotrophins and Migraine. Vitam Horm 2017, 104: 459–473.

    CAS  PubMed  Google Scholar 

  123. Long T, He W, Pan Q, Zhang S, Zhang D, Qin G, et al. Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model. J Headache Pain 2020, 21: 4.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Cavaliere F, Florenzano F, Amadio S, Fusco FR, Viscomi MT, D’Ambrosi N, et al. Up-regulation of P2X2, P2X4 receptor and ischemic cell death: prevention by P2 antagonists. Neuroscience 2003, 120: 85–98.

    CAS  PubMed  Google Scholar 

  125. Cheng RD, Ren JJ, Zhang YY, Ye XM. P2X4 receptors expressed on microglial cells in post-ischemic inflammation of brain ischemic injury. Neurochem Int 2014, 67: 9–13.

    CAS  PubMed  Google Scholar 

  126. Verma R, Cronin CG, Hudobenko J, Venna VR, McCullough LD, Liang BT. Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav Immun 2017, 66: 302–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Vazquez-Villoldo N, Domercq M, Martin A, Llop J, Gomez-Vallejo V, Matute C. P2X4 receptors control the fate and survival of activated microglia. Glia 2014, 62: 171–184.

    PubMed  Google Scholar 

  128. Li F, Wang L, Li JW, Gong M, He L, Feng R, et al. Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4. BMC Neurosci 2011, 12: 111.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 2007, 55: 604–616.

    PubMed  Google Scholar 

  130. Ozaki T, Muramatsu R, Sasai M, Yamamoto M, Kubota Y, Fujinaka T, et al. The P2X4 receptor is required for neuroprotection via ischemic preconditioning. Sci Rep 2016, 6: 25893.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kang TC, An SJ, Park SK, Hwang IK, Won MH. P2X2 and P2X4 receptor expression is regulated by a GABA(A) receptor-mediated mechanism in the gerbil hippocampus. Brain Res Mol Brain Res 2003, 116: 168–175.

    CAS  PubMed  Google Scholar 

  132. Ulmann L, Levavasseur F, Avignone E, Peyroutou R, Hirbec H, Audinat E, et al. Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus. Glia 2013, 61: 1306–1319.

    PubMed  Google Scholar 

  133. Murphy MP, LeVine H, 3rd. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 2010, 19: 311–323.

    PubMed  PubMed Central  Google Scholar 

  134. Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract 2015, 24: 1–10.

    PubMed  Google Scholar 

  135. Erb L, Woods LT, Khalafalla MG, Weisman GA. Purinergic signaling in Alzheimer’s disease. Brain Res Bull 2019, 151: 25–37.

    CAS  PubMed  Google Scholar 

  136. Saez-Orellana F, Godoy PA, Bastidas CY, Silva-Grecchi T, Guzman L, Aguayo LG, et al. ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of beta-amyloid peptide in hippocampal neurons. Neuropharmacology 2016, 100: 116–123.

    CAS  PubMed  Google Scholar 

  137. Godoy PA, Ramirez-Molina O, Fuentealba J. Exploring the Role of P2X Receptors in Alzheimer’s Disease. Front Pharmacol 2019, 10: 1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Varma R, Chai Y, Troncoso J, Gu J, Xing H, Stojilkovic SS, et al. Amyloid-beta induces a caspase-mediated cleavage of P2X4 to promote purinotoxicity. Neuromolecular Med 2009, 11: 63–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Martin E, Amar M, Dalle C, Youssef I, Boucher C, Le Duigou C, et al. New role of P2X7 receptor in an Alzheimer’s disease mouse model. Mol Psychiatry 2019, 24: 108–125.

    CAS  PubMed  Google Scholar 

  140. Martinez-Frailes C, Di Lauro C, Bianchi C, de Diego-Garcia L, Sebastian-Serrano A, Bosca L, et al. Amyloid peptide induced neuroinflammation increases the P2X7 receptor expression in microglial cells, impacting on its functionality. Front Cell Neurosci 2019, 13: 143.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sperlagh B, Illes P. P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 2014, 35: 537–547.

    CAS  PubMed  Google Scholar 

  142. McGeer PL, Rogers J, McGeer EG. Inflammation, antiinflammatory agents, and Alzheimer’s disease: The last 22 years. J Alzheimers Dis 2016, 54: 853–857.

    PubMed  Google Scholar 

  143. Weinhold K, Krause-Buchholz U, Rodel G, Kasper M, Barth K. Interaction and interrelation of P2X7 and P2X4 receptor complexes in mouse lung epithelial cells. Cell Mol Life Sci 2010, 67: 2631–2642.

    CAS  PubMed  Google Scholar 

  144. Li F, Guo N, Ma Y, Ning B, Wang Y, Kou L. Inhibition of P2X4 suppresses joint inflammation and damage in collagen-induced arthritis. Inflammation 2014, 37: 146–153.

    CAS  PubMed  Google Scholar 

  145. Layhadi JA, Turner J, Crossman D, Fountain SJ. ATP evokes Ca(2+) responses and CXCL5 secretion via P2X4 receptor activation in human monocyte-derived macrophages. J Immunol 2018, 200: 1159–1168.

    CAS  PubMed  Google Scholar 

  146. Andries M, Van Damme P, Robberecht W, Van Den Bosch L. Ivermectin inhibits AMPA receptor-mediated excitotoxicity in cultured motor neurons and extends the life span of a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2007, 25: 8–16.

    CAS  PubMed  Google Scholar 

  147. Boue-Grabot E, Emerit MB, Toulme E, Seguela P, Garret M. Cross-talk and co-trafficking between rho1/GABA receptors and ATP-gated channels. J Biol Chem 2004, 279: 6967–6975.

    CAS  PubMed  Google Scholar 

  148. Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 2005, 8: 1078–1086.

    CAS  PubMed  Google Scholar 

  149. Gu JG, MacDermott AB. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 1997, 389: 749–753.

    CAS  PubMed  Google Scholar 

  150. Pankratov YV, Lalo UV, Krishtal OA. Role for P2X receptors in long-term potentiation. J Neurosci 2002, 22: 8363–8369.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Krugel U, Kittner H, Franke H, Illes P. Purinergic modulation of neuronal activity in the mesolimbic dopaminergic system in vivo. Synapse 2003, 47: 134–142.

    CAS  PubMed  Google Scholar 

  152. Xiao C, Zhou C, Li K, Davies DL, Ye JH. Purinergic type 2 receptors at GABAergic synapses on ventral tegmental area dopamine neurons are targets for ethanol action. J Pharmacol Exp Ther 2008, 327: 196–205.

    CAS  PubMed  Google Scholar 

  153. Zhou FC, Zhang JK, Lumeng L, Li TK. Mesolimbic dopamine system in alcohol-preferring rats. Alcohol 1995, 12: 403–412.

    CAS  PubMed  Google Scholar 

  154. Ralph RJ, Paulus MP, Fumagalli F, Caron MG, Geyer MA. Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci 2001, 21: 305–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Khoja S, Shah V, Garcia D, Asatryan L, Jakowec MW, Davies DL. Role of purinergic P2X4 receptors in regulating striatal dopamine homeostasis and dependent behaviors. J Neurochem 2016, 139: 134–148.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Nagatsu T, Mogi M, Ichinose H, Togari A. Cytokines in Parkinson’s disease. J Neural Transm Suppl 2000: 143–151.

  157. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 2003, 106: 518–526.

    CAS  PubMed  Google Scholar 

  158. Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R, et al. Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci 2007, 27: 3328–3337.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Doorn KJ, Moors T, Drukarch B, van de Berg W, Lucassen PJ, van Dam AM. Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun 2014, 2: 90.

    PubMed  PubMed Central  Google Scholar 

  160. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011, 11: 775–787.

    CAS  PubMed  Google Scholar 

  161. Joers V, Tansey MG, Mulas G, Carta AR. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 2017, 155: 57–75.

    CAS  PubMed  Google Scholar 

  162. Wang XH, Xie X, Luo XG, Shang H, He ZY. Inhibiting purinergic P2X7 receptors with the antagonist brilliant blue G is neuroprotective in an intranigral lipopolysaccharide animal model of Parkinson’s disease. Mol Med Rep 2017, 15: 768–776.

    CAS  PubMed  Google Scholar 

  163. Crabbe M, Van der Perren A, Bollaerts I, Kounelis S, Baekelandt V, Bormans G, et al. Increased P2X7 receptor binding is associated with neuroinflammation in acute but not chronic rodent models for Parkinson’s disease. Front Neurosci 2019, 13: 799.

    PubMed  PubMed Central  Google Scholar 

  164. Le W, Wu J, Tang Y. Protective microglia and their regulation in Parkinson’s disease. Front Mol Neurosci 2016, 9: 89.

    PubMed  PubMed Central  Google Scholar 

  165. Volonte C, Apolloni S, Parisi C, Amadio S. Purinergic contribution to amyotrophic lateral sclerosis. Neuropharmacology 2016, 104: 180–193.

    CAS  PubMed  Google Scholar 

  166. Casanovas A, Hernandez S, Tarabal O, Rossello J, Esquerda JE. Strong P2X4 purinergic receptor-like immunoreactivity is selectively associated with degenerating neurons in transgenic rodent models of amyotrophic lateral sclerosis. J Comp Neurol 2008, 506: 75–92.

    CAS  PubMed  Google Scholar 

  167. Hernandez S, Casanovas A, Piedrafita L, Tarabal O, Esquerda JE. Neurotoxic species of misfolded SOD1G93A recognized by antibodies against the P2X4 subunit of the ATP receptor accumulate in damaged neurons of transgenic animal models of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2010, 69: 176–187.

    CAS  PubMed  Google Scholar 

  168. D’Ambrosi N, Finocchi P, Apolloni S, Cozzolino M, Ferri A, Padovano V, et al. The proinflammatory action of microglial P2 receptors is enhanced in SOD1 models for amyotrophic lateral sclerosis. J Immunol 2009, 183: 4648–4656.

    PubMed  Google Scholar 

  169. Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications. Front Immunol 2017, 8: 1005.

    PubMed  PubMed Central  Google Scholar 

  170. Cieslak M, Roszek K, Wujak M. Purinergic implication in amyotrophic lateral sclerosis-from pathological mechanisms to therapeutic perspectives. Purinergic Signal 2019, 15: 1–15.

    CAS  PubMed  Google Scholar 

  171. Fabbrizio P, Amadio S, Apolloni S, Volonte C. P2X7 Receptor activation modulates autophagy in SOD1-G93A mouse microglia. Front Cell Neurosci 2017, 11: 249.

    PubMed  PubMed Central  Google Scholar 

  172. Apolloni S, Amadio S, Montilli C, Volonte C, D’Ambrosi N. Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 2013, 22: 4102–4116.

    CAS  PubMed  Google Scholar 

  173. Sluyter R, Bartlett R, Ly D, Yerbury JJ. P2X7 receptor antagonism in amyotrophic lateral sclerosis. Neural Regen Res 2017, 12: 749–750.

    PubMed  PubMed Central  Google Scholar 

  174. Kawano A, Tsukimoto M, Mori D, Noguchi T, Harada H, Takenouchi T, et al. Regulation of P2X7-dependent inflammatory functions by P2X4 receptor in mouse macrophages. Biochem Biophys Res Commun 2012, 420: 102–107.

    CAS  PubMed  Google Scholar 

  175. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015, 15: 545–558.

    CAS  PubMed  Google Scholar 

  176. Zabala A, Vazquez-Villoldo N, Rissiek B, Gejo J, Martin A, Palomino A, et al. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol Med 2018, 10.

  177. Feldmann A, Amphornrat J, Schonherr M, Winterstein C, Mobius W, Ruhwedel T, et al. Transport of the major myelin proteolipid protein is directed by VAMP3 and VAMP7. J Neurosci 2011, 31: 5659–5672.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Chen G, Zhang Z, Wei Z, Cheng Q, Li X, Li W, et al. Lysosomal exocytosis in Schwann cells contributes to axon remyelination. Glia 2012, 60: 295–305.

    PubMed  Google Scholar 

  179. Fois G, Winkelmann VE, Bareis L, Staudenmaier L, Hecht E, Ziller C, et al. ATP is stored in lamellar bodies to activate vesicular P2X4 in an autocrine fashion upon exocytosis. J Gen Physiol 2018, 150: 277–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Yardley MM, Wyatt L, Khoja S, Asatryan L, Ramaker MJ, Finn DA, et al. Ivermectin reduces alcohol intake and preference in mice. Neuropharmacology 2012, 63: 190–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Wyatt LR, Finn DA, Khoja S, Yardley MM, Asatryan L, Alkana RL, et al. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice. Neurochem Res 2014, 39: 1127–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Franklin KM, Asatryan L, Jakowec MW, Trudell JR, Bell RL, Davies DL. P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders. Front Neurosci 2014, 8: 176.

    PubMed  PubMed Central  Google Scholar 

  183. Franklin KM, Hauser SR, Lasek AW, Bell RL, McBride WJ. Involvement of Purinergic P2X4 Receptors in Alcohol Intake of High-Alcohol-Drinking (HAD) Rats. Alcohol Clin Exp Res 2015, 39: 2022–2031.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kimpel MW, Strother WN, McClintick JN, Carr LG, Liang T, Edenberg HJ, et al. Functional gene expression differences between inbred alcohol-preferring and -non-preferring rats in five brain regions. Alcohol 2007, 41: 95–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Asatryan L, Nam HW, Lee MR, Thakkar MM, Saeed Dar M, Davies DL, et al. Implication of the purinergic system in alcohol use disorders. Alcohol Clin Exp Res 2011, 35: 584–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Davies DL, Kuo ST, Alkana RL. Differential effects of propofol and ethanol on P2X4 receptors expressed in Xenopus oocytes. Int Congr Ser 2005, 1283: 285–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Ostrovskaya O, Asatryan L, Wyatt L, Popova M, Li K, Peoples RW, et al. Ethanol is a fast channel inhibitor of P2X4 receptors. J Pharmacol Exp Ther 2011, 337: 171–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Asatryan L, Popova M, Perkins D, Trudell JR, Alkana RL, Davies DL. Ivermectin antagonizes ethanol inhibition in purinergic P2X4 receptors. J Pharmacol Exp Ther 2010, 334: 720–728.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Potula R, Haorah J, Knipe B, Leibhart J, Chrastil J, Heilman D, et al. Alcohol abuse enhances neuroinflammation and impairs immune responses in an animal model of human immunodeficiency virus-1 encephalitis. Am J Pathol 2006, 168: 1335–1344.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Gofman L, Cenna JM, Potula R. P2X4 receptor regulates alcohol-induced responses in microglia. J Neuroimmune Pharmacol 2014, 9: 668–678.

    PubMed  PubMed Central  Google Scholar 

  191. Gofman L, Fernandes NC, Potula R. Relative role of Akt, ERK and CREB in alcohol-induced microglia P2X4R receptor expression. Alcohol Alcohol 2016, 51: 647–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Wixey JA, Reinebrant HE, Carty ML, Buller KM. Delayed P2X4R expression after hypoxia-ischemia is associated with microglia in the immature rat brain. J Neuroimmunol 2009, 212: 35–43.

    CAS  PubMed  Google Scholar 

  193. Bortolato M, Yardley MM, Khoja S, Godar SC, Asatryan L, Finn DA, et al. Pharmacological insights into the role of P2X4 receptors in behavioural regulation: lessons from ivermectin. Int J Neuropsychopharmacol 2013, 16: 1059–1070.

    CAS  PubMed  Google Scholar 

  194. Khoja S, Asatryan L, Jakowec MW, Davies DL. Dopamine receptor blockade attenuates purinergic P2X4 receptor-mediated prepulse inhibition deficits and underlying molecular mechanisms. Front Cell Neurosci 2019, 13: 331.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by the Centre National de la Recherche Scientifique, University of Bordeaux, and grants from Association pour la Recherche sur la Sclérose Latérale Amyotrophique, Initiative d’Excellencc of Bordeaux, and Laboratoire d’Excellence BRAIN ANR-10-LABX-43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Boué-Grabot.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duveau, A., Bertin, E. & Boué-Grabot, E. Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neurosci. Bull. 36, 1327–1343 (2020). https://doi.org/10.1007/s12264-020-00570-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00570-y

Keywords

Navigation