Skip to main content
Log in

“Takeaway” drug delivery: A new nanomedical paradigm

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

An alternative model to the well-established paradigm of the externally switchable drug delivery systems is herein proposed. In contrast to the on–off archetype, here the amount of released drug is pre-set by the application of an external stimulus, and is gradually released after the withdrawal of the exogenous signal. These attributes are achieved through an innovative approach featuring the integration of plasmonic nanovehicles in a polymer-based film. Such a platform is provided with optically responsive capabilities together with multiple diffusional barriers, allowing for an “on-demand” time-limited release where light acts as a therapeutic “starting shot”. These nanoarchitectured depots have great potential as implantable drug delivery systems in clinical scenarios where a recurrent, sustained, and yet, on–off administration of medication is required. The application of these hybrid materials may extend the implementation of nanomedicine strategies beyond the point-of-care setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta, M.; Agrawal, G. P.; Vyas, S. P. Polymeric nanomedicines as a promising vehicle for solid tumor therapy and targeting. Curr. Mol. Med. 2013, 13, 179–204.

    Article  Google Scholar 

  2. Maeda, H.; Bharate, G. Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009, 71, 409–419.

    Article  Google Scholar 

  3. Basile, L.; Pignatello, R.; Passirani, C. Active targeting strategies for anticancer drug nanocarriers. Curr. Drug Deliv. 2012, 9, 255–268.

    Article  Google Scholar 

  4. De Souza, R.; Zahedi, P.; Allen, C. J.; Piquette-Miller, M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv. 2010, 17, 365–375.

    Article  Google Scholar 

  5. Exner, A. A.; Saidel, G. M. Drug-eluting polymer implants in cancer therapy. Expert Opin. Drug Deliv. 2008, 5, 775–788.

    Article  Google Scholar 

  6. Wolinsky, J. B.; Colson, Y. L.; Grinstaff, M. W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release 2012, 159, 14–26.

    Article  Google Scholar 

  7. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 54, 3–12.

    Article  Google Scholar 

  8. Calvert, P. Hydrogels for soft machines. Adv. Mater. 2009, 21, 743–756.

    Article  Google Scholar 

  9. Williams, H. D.; Trevaskis, N. L.; Charman, S. A.; Shanker, R. M.; Charman, W. N.; Pouton, C. W.; Porter, C. J. H. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 2013, 65, 315–499.

    Article  Google Scholar 

  10. Huang, X.; Brazel, C. S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121–136.

    Article  Google Scholar 

  11. Hoare, T. R.; Kohane, D. S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007.

    Article  Google Scholar 

  12. De Robertis, S.; Bonferoni, M. C.; Elviri, L.; Sandri, G.; Caramella, C.; Bettini, R. Advances in oral controlled drug delivery: The role of drug–polymer and interpolymer noncovalent interactions. Expert Opin. Drug Deliv. 2015, 12, 441–453.

    Article  Google Scholar 

  13. Khandare, J.; Minko, T. Polymer–drug conjugates: Progress in polymeric prodrugs. Prog. Polym. Sci. 2006, 31, 359–397.

    Article  Google Scholar 

  14. Aminabhavi, T. M.; Nadagouda, M. N.; More, U. A.; Joshi, S. D.; Kulkarni, V. H.; Noolvi, M. N.; Kulkarni, P. V. Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin. Drug Deliv. 2015, 12, 669–688.

    Article  Google Scholar 

  15. Zhang, X.-Z.; Jo Lewis, P.; Chu, C.-C. Fabrication and characterization of a smart drug delivery system: Microsphere in hydrogel. Biomaterials 2005, 26, 3299–3309.

    Article  Google Scholar 

  16. Mourtas, S.; Fotopoulou, S.; Duraj, S.; Sfika, V.; Tsakiroglou, C.; Antimisiaris, S. G. Liposomal drugs dispersed in hydrogels: Effect of liposome, drug and gel properties on drug release kinetics. Colloids Surf. B Biointerfaces 2007, 55, 212–221.

    Article  Google Scholar 

  17. Wei, L.; Cai, C. H.; Lin, J. P.; Chen, T. Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials 2009, 30, 2606–2613.

    Article  Google Scholar 

  18. Josef, E.; Barat, K.; Barsht, I.; Zilberman, M.; Bianco-Peled, H. Composite hydrogels as a vehicle for releasing drugs with a wide range of hydrophobicities. Acta Biomater. 2013, 9, 8815–8822.

    Article  Google Scholar 

  19. Lynch, I.; Dawson, K. A. Synthesis and characterization of an extremely versatile structural motif called the “plumpudding” gel. J. Phys. Chem. B 2003, 107, 9629–9637.

    Article  Google Scholar 

  20. Lynch, I.; Dawson, K. A. Release of model compounds from “plum-pudding”-type gels composed of microgel particles randomly dispersed in a gel matrix. J. Phys. Chem. B 2004, 108, 10893–10898.

    Article  Google Scholar 

  21. Satarkar, N. S.; Biswal, D.; Hilt, J. Z. Hydrogel nanocomposites: A review of applications as remote controlled biomaterials. Soft Matter. 2010, 6, 2364–2371.

    Article  Google Scholar 

  22. Kikuchi, A.; Okano, T. Pulsatile drug release control using hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 53–77.

    Article  Google Scholar 

  23. Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001, 53, 321–339.

    Article  Google Scholar 

  24. Vaz, B.; Salgueiriño, V.; Pérez-Lorenzo, M.; Correa-Duarte, M. A. Enhancing the exploitation of functional nanomaterials through spatial confinement: The case of inorganic submicrometer capsules. Langmuir 2015, 31, 8745–8755.

    Article  Google Scholar 

  25. Jain, P. K.; El-Sayed, M. A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 2010, 487, 153–164.

    Article  Google Scholar 

  26. Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

    Article  Google Scholar 

  27. Espinosa, A.; Silva, A. K. A.; Sánchez-Iglesias, A.; Grzelczak, M.; Péchoux, C.; Desboeufs, K.; Liz-Marzán, L. M.; Wilhelm, C. Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo: Toward a plasmonic thermal fingerprint in tumoral environment. Adv. Healthc. Mater. 2016, 5, 1040–1048.

    Article  Google Scholar 

  28. Topete, A.; Alatorre-Meda, M.; Villar-Alvarez, E. M.; Carregal-Romero, S.; Barbosa, S.; Parak, W. J.; Taboada, P.; Mosquera, V. Polymeric-gold nanohybrids for combined imaging and cancer therapy. Adv. Healthc. Mater. 2014, 3, 1309–1325.

    Article  Google Scholar 

  29. Zhang, Y.; Hsu, B. Y. W.; Ren, C. L.; Li, X.; Wang, J. Silica-based nanocapsules: Synthesis, structure control and biomedical applications. Chem. Soc. Rev. 2015, 44, 315–335.

    Article  Google Scholar 

  30. Ernawati, L.; Ogi, T.; Balgis, R.; Okuyama, K.; Stucki, M.; Hess, S. C.; Stark, W. J. Hollow silica as an optically transparent and thermally insulating polymer additive. Langmuir 2016, 32, 338–345.

    Article  Google Scholar 

  31. Taylor, A. B.; Siddiquee, A. M.; Chon, J. W. M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano 2014, 8, 12071–12079.

    Article  Google Scholar 

  32. Kim, K.; Jo, M.-C.; Jeong, S.; Palanikumar, L.; Rotello, V. M.; Ryu, J.-H.; Park, M.-H. Externally controlled drug release using a gold nanorod contained composite membrane. Nanoscale 2016, 8, 11949–11955.

    Article  Google Scholar 

  33. Hribar, K. C.; Lee, M. H.; Lee, D.; Burdick, J. A. Enhanced release of small molecules from near-infrared light responsive polymer−nanorod composites. ACS Nano 2011, 5, 2948–2956.

    Article  Google Scholar 

  34. Hoare, T.; Santamaria, J.; Goya, G. F.; Irusta, S.; Lin, D.; Lau, S.; Padera, R.; Langer, R.; Kohane, D. S. A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 2009, 9, 3651–3657.

    Article  Google Scholar 

  35. Derfus, A. M.; von Maltzahn, G.; Harris, T. J.; Duza, T.; Vecchio, K. S.; Ruoslahti, E.; Bhatia, S. N. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 2007, 19, 3932–3936.

    Article  Google Scholar 

  36. Shchukin, D. G.; Radtchenko, I. L.; Sukhorukov, G. B. Photoinduced reduction of silver inside microscale polyelectrolyte capsules. ChemPhysChem 2003, 4, 1101–1103.

    Article  Google Scholar 

  37. Duff, D. G.; Baiker, A.; Edwards, P. P. A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 1993, 9, 2301–2309.

    Google Scholar 

  38. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29.

    Article  Google Scholar 

  39. Pham, T.; Jackson, J. B.; Halas, N. J.; Lee, T. R. Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 2002, 18, 4915–4920.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Xunta de Galicia (No. EM2014/035), MINECO-Spain (No. CTM2014-58481-R), and Fundación Tatiana Pérez de Guzmán el Bueno.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moisés Pérez-Lorenzo or Miguel A. Correa-Duarte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Domínguez, E., Rodríguez-González, B., Pérez-Lorenzo, M. et al. “Takeaway” drug delivery: A new nanomedical paradigm. Nano Res. 10, 2234–2243 (2017). https://doi.org/10.1007/s12274-016-1412-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1412-3

Keywords

Navigation