Skip to main content
Log in

The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A highly versatile seed-mediated approach for the synthesis of citrate-stabilized gold, silver and palladium nanoparticles (NPs) with size control is reported. The use of iron(II) as a reducing agent enables the fabrication of monodisperse NPs in a wide range of sizes (from 15 nm to at least 120 nm (90 nm for Pd)) at room temperature. The citrate as capping ligand on the NPs surface facilitates its further surface modification with proteins and thiolated molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turkevich, J.; Stevenson, P. C.; Hillier, J. Astudy of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc.1951, 11, 55–75.

    Article  Google Scholar 

  2. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.1973, 241, 20–22.

    Article  CAS  Google Scholar 

  3. Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.: Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B2006, 110, 15700–15707.

    CAS  Google Scholar 

  4. Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc.2007, 129, 13939–13948.

    Article  CAS  Google Scholar 

  5. Ojea-Jiménez, I.; Romero, F. M.; Bastúus, N. G.; Puntes, V. Small gold nanoparticles synthesized with sodium citrate and heavy water: Insights into the reaction mechanism. J. Phys. Chem. C2010, 114, 1800–1804.

    Article  CAS  Google Scholar 

  6. Schulz, F.; Homolka, T.; Bastús, N. G.: Puntes, V.: Weller, H.; Vossmeyer, T. Little adjustments significantly improve the turkevich synthesis of gold nanoparticles. Langmuir2014, 30, 10779–10784.

    Article  CAS  Google Scholar 

  7. Brown, K. R.; Walter, D. G.; Natan, M. J. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem. Mater.2000, 12, 306–313.

    Article  CAS  Google Scholar 

  8. Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc.2009, 131, 17042–17043.

    Article  CAS  Google Scholar 

  9. Bastús, N. G.: Comenge, J.; Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmuir2011, 27, 11098–11105.

    Article  CAS  Google Scholar 

  10. Ziegler, C.; Eychmüller, A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15–300 nm. J. Phys. Chem. C2011, 115, 4502–4506.

    Article  CAS  Google Scholar 

  11. Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer-Verlag: Berlin, Heidelberg, 1995.

    Book  Google Scholar 

  12. Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem.1982, 86, 3391–3395.

    Article  CAS  Google Scholar 

  13. Wan, Y.; Guo, Z. R.; Jiang, X. L.; Fang, K.; Lu, X.; Zhang, Y.: Gu, N. Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J. Colloid Interface Sci.2013, 394, 263–268.

    Article  CAS  Google Scholar 

  14. Bastús, N. G.: Merkoçi, F.; Piella, J.; Puntes, V. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater.2014, 26, 2836–2846.

    Article  CAS  Google Scholar 

  15. Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzán, L. M.; Pérez-Juste, J.; Pastoriza-Santos, I. Size tunable Au@Ag core shell nanoparticles: Synthesis and surface-enhanced Raman scattering properties. Langmuir2013, 29, 15076–15082.

    Article  CAS  Google Scholar 

  16. Djafari, J.; Fernández-Lodeiro, A.; García-Lojo, D.; Fernández-Lodeiro, J.; Rodríguez-González, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Capelo, J. L.; Lodeiro, C. Iron(II) as a green reducing agent in gold nanoparticle synthesis. ACS Sustainable Chem. Eng.2019, 7, 8295–8302.

    Article  CAS  Google Scholar 

  17. Fernández-Lodeiro, A.; Djafari, J.; Lopez-Tejedor, D.; Perez-Rizquez, C.; Rodríguez-Gonzalez, B.; Capelo, J. L.; Palomo, J. M.; Lodeiro, C.; Fernández-Lodeiro, J. Highly accessible aqueous synthesis of well-dispersed dendrimer type platinum nanoparticles and their catalytic applications. Nano Res.2019, 12, 1083–1092.

    Article  CAS  Google Scholar 

  18. Wen, Y. H.; Zhang, H. M.; Qian, P.; Zhou, H. T.; Zhao, P.; Yi, B. L.; Yang, Y. S. Studies on iron (Fe3+/Fe2+)-complex/bromine (Br2/Br-) redox flow cell in sodium acetate solution. J. Electrochem. Soc.2006, 153, A929–A934.

    Article  CAS  Google Scholar 

  19. Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett.2006, 6, 833–838.

    Article  CAS  Google Scholar 

  20. Sugawa, K.; Tahara, H.; Yamashita, A.; Otsuki, J.; Sagara, T.; Harumoto, T.; Yanagida, S. Refractive index susceptibility of the plasmonic palladium nanoparticle: Potential as the third plasmonic sensing material. ACS Nano2015, 9, 1895–1904.

    Article  CAS  Google Scholar 

  21. Kang, S.; Shin, W.; Kang, K.; Choi, M. H.; Kim, Y. J.; Kim, Y. K.; Min, D. H.; Jang, H. Revisiting of Pd nanoparticles in cancer treatment: All-round excellence of porous Pd nanoplates in gene-thermo combinational therapy. ACS Appl. Mater. Interfaces2018, 10, 13819–13828.

    Article  CAS  Google Scholar 

  22. Rodal-Cedeira, S.; Montes-Garcíia, V.: Polavarapu, L.; Solís, D. M.; Heidari, H.; La Porta, A.; Angiola, M.; Martucci, A.; Taboada, J. M.; Obelleiro, F. et al. Plasmonic Au@Pd nanorods with boosted refractive index susceptibility and SERS efficiency: A multifunctional platform for hydrogen sensing and monitoring of catalytic reactions. Chem. Mater.2016, 28, 9169–9180.

    Article  CAS  Google Scholar 

  23. Zhu, X. Z.; Jia, H. L.; Zhu, X. M.; Cheng, S.; Zhuo, X. L.; Qin, F.; Yang, Z.; Wang, J. F. Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity. Adv. Funct. Mater.2017, 27, 1700016.

    Article  CAS  Google Scholar 

  24. Gurunatha, K. L.; Fournier, A. C.; Urvoas, A.; Valerio-Lepiniec, M.; Marchi, V.: Minard, P.: Dujardin, E. Nanoparticles self-assembly driven by high affinity repeat protein pairing. ACS Nano2016, 10, 3176–3185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Economía y Competitividad (MINECO, Spain, No. MAT2016-77809-R), Xunta de Galicia/FEDER (No. GRC ED431C 2016-048). C. F.-L. acknowledges Xunta de Galicia for a predoctoral scholarship (Programa de axudas á etapa predoutoral). J. F.-L. thanks FCT/ MEC (Portugal) and FCT-UNL for the DL57/2016 Assistant Researcher Contract. C. L. and J. F.-L. thank the PROTEOMASS Scientific Society (Portugal) for the support and the Associate Laboratory for Green Chemistry-LAQV/REQUIMTE (FCT/MEC (UID/QUI/ 50006/2013)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Pérez-Juste or Isabel Pastoriza-Santos.

Electronic Supplementary Material

12274_2020_2854_MOESM1_ESM.pdf

The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Lodeiro, C., Fernández-Lodeiro, J., Carbó-Argibay, E. et al. The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature. Nano Res. 13, 2351–2355 (2020). https://doi.org/10.1007/s12274-020-2854-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2854-1

Keywords

Navigation