Skip to main content
Log in

Effects of Leg-to-Body Position on the Responses of Rat Cerebellar and Vestibular Nuclear Neurons to Labyrinthine Stimulation

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The spatial organization of vestibulospinal (VS) reflexes, elicited by labyrinthine signals and related to head motion, depends on the direction of body tilt, due to proprioceptive neck afferents acting through the cerebellar anterior vermis. The responses of Purkinje cells located within this region to labyrinthine stimulation are modulated by the head-to-body position. We investigated, in urethane-anesthetized rats, whether a 90° leg-to-trunk displacement modifies the responses of corticocerebellar and vestibular nuclear neurons to the labyrinthine input, which would indicate that VS reflexes are tuned by the leg-to-trunk position. With this aim, unit activity was recorded during “wobble” stimuli that allow evaluating the gain and spatiotemporal properties of neuronal responses. The response gain of corticocerebellar units showed a significant drop in the leg-rotated position with respect to the control one. Following a change in leg position, a proportion of the recorded neurons showed significant changes in the direction and phase of the response vector. In contrast, vestibular nuclear neurons did not show significant modifications in their response gain and direction. Thus, proprioceptive afferents signaling leg-to-trunk position seem to affect the processing of directional labyrinthine signals within the cerebellar cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. All the following computations are relative to units recorded on the right side. For left side recorded units, CW and CCW parameters have to be reciprocally exchanged.

References

  1. Roberts TDM. Neurophysiology of Postural Mechanisms. 2nd ed. London: Butterworths; 1978.

    Google Scholar 

  2. Horak FB, MacPherson JM. Postural orientation and equilibrium. In: Rowell LB, Shepherd JT, editors. Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. New York: Oxford University Press; 1996. p. 255–92.

    Google Scholar 

  3. Welgampola MS, Colebatch JC. Vestibulospinal reflexes: quantitative effects on sensory feedback and postural task. Exp Brain Res. 2001;139:345–53.

    Article  PubMed  CAS  Google Scholar 

  4. Cenciarini M, Peterka R. Stimulus-dependent changes in vestibular contribution to human postural control. J Neurophysiol. 2006;95:2733–50.

    Article  PubMed  Google Scholar 

  5. Lackner JR, Dizio P, Jeka J, Horak F, Krebs D, Rabin E. Precision contact of the fingertip reduces postural sway of individual with bilateral vestibular loss. Exp Brain Res. 1999;126:459–66.

    Article  PubMed  CAS  Google Scholar 

  6. Igarashi M, Watanabe T, Maxian PM. Dynamic equilibrium in squirrel monkeys after unilateral and bilateral labyrinthectomy. Acta Otolaryngol. 1970;69:247–53.

    Article  PubMed  CAS  Google Scholar 

  7. Roberts TD. Reflex balance. Nature. 1973;244:156–8.

    Article  PubMed  CAS  Google Scholar 

  8. Wilson VJ, Schor RH, Suzuki I, Park BR. Spatial organization of neck and vestibular reflexes acting on the forelimbs of the decerebrate cat. J Neurophysiol. 1986;55:514–26.

    PubMed  CAS  Google Scholar 

  9. Magnus R. Korpestellung. Berlin: Springer; 1928.

    Google Scholar 

  10. Von Holst E, Mittelstaedt H. Das Reafferenzprinzip (Wechselwirkung zwischen zentralnervensystem und peripherie). Naturwissenschaften. 1950;37:464–76.

    Article  Google Scholar 

  11. Lindsay KW, Roberts TD, Rosemberg JR. Asymmetric tonic labyrinth reflexes and their interaction with neck reflexes in decerebrate cat. J Physiol. 1976;261:583–601.

    PubMed  CAS  Google Scholar 

  12. Ezure K, Wilson VJ. Dynamics of the neck-to-forelimb reflexes in the decerebrate cat. J Neurophysiol. 1983;50:688–95.

    PubMed  CAS  Google Scholar 

  13. Manzoni D, Pompeiano O, Srivastava UC, Stampacchia G. Responses of forelimb extensors to sinusoidal stimulation of macular labyrinth and neck receptors. Arch Ital Biol. 1983;121:205–14.

    PubMed  CAS  Google Scholar 

  14. Zafeiriou DI. Primitive reflexes and postural reactions in the neurodevelopmental examination. Pediatr Neurol. 2004;31:1–8.

    Article  PubMed  Google Scholar 

  15. Lund S, Broberg C. Effects of different head positions on postural sway induced by a reproducible vestibular error signal. Acta Physiol Scand. 1983;117:307–9.

    Article  PubMed  CAS  Google Scholar 

  16. Britton TC, Day BL, Brown P, Rothwell JC, Thompson PD, Marsden CD. Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man. Exp Brain Res. 1993;94:143–51.

    Article  PubMed  CAS  Google Scholar 

  17. Nashner LM, Wolfsen P. Influence of head position and proprioceptive cues on short latency postural reflexes evoked by galvanic stimulation of the human labyrinth. Brain Res. 1974;67:255–68.

    Article  PubMed  CAS  Google Scholar 

  18. Fitzpatrick R, Burke D, Gandevia SC. Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. J Physiol. 1994;478:363–72.

    PubMed  Google Scholar 

  19. Mergner T, Siebold C, Schweigart G, Becker W. Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation. Exp Brain Res. 1991;85:389–404.

    Article  PubMed  CAS  Google Scholar 

  20. Mergner T, Huber W, Becker W. Vestibular-neck interaction and transformation of sensory coordinates. J Vest Res. 1997;7:347–67.

    Article  CAS  Google Scholar 

  21. Peterka RJ. Sensorimotor integration in human postural control. J Neurophysiol. 2002;88:1097–118.

    PubMed  CAS  Google Scholar 

  22. Mergner T, Maurer C, Peterka RJ. A multisensory posture control model of human upright stance. Prog Brain Res. 2003;171:231–50.

    Google Scholar 

  23. Maurer C, Margner T, Peterka RJ. Multisensory control model of human upright stance. Exp Brain Res. 2006;142:189–201.

    Google Scholar 

  24. Manzoni D, Pompeiano O, Andre P. Neck influences on the spatial properties of vestibulospinal reflex in decerebrate cats: role of the cerebellar anterior vermis. J Vest Res. 1998;8:283–97.

    Article  CAS  Google Scholar 

  25. Kammermaier S, Kleine J, Buttner U. Vestibular-neck interaction in cerebellar patients. Ann N Y Acad Sci. 2009;1164:394–9.

    Article  Google Scholar 

  26. Wilson VJ, Ezure K, Timerick SJ. Tonic neck reflex on the decerebrate cat: response of spinal interneurons to natural stimulation of neck and vestibular receptors. J Neurophysiol. 1984;51:567–77.

    PubMed  CAS  Google Scholar 

  27. Pompeiano O, Manzoni D, Srivastava UC, Stampacchia G. Convergence and interaction of neck and macular vestibular inputs on reticulospinal neurons. Neuroscience. 1984;12:111–28.

    Article  PubMed  CAS  Google Scholar 

  28. Kubin L, Manzoni D, Pompeiano O. Responses of lateral reticular neurons to convergent neck and macular vestibular inputs. J Neurophysiol. 1981;46:48–64.

    PubMed  CAS  Google Scholar 

  29. Boyle R, Pompeiano O. Convergence and interaction of neck and macular vestibular inputs on vestibulospinal neurons. J Neurophysiol. 1981;45:852–68.

    PubMed  CAS  Google Scholar 

  30. Anastasopoulos D, Mergner T. Canal-neck interaction in vestibular nuclear neurons of the cat. Exp Brain Res. 1982;46:269–80.

    Article  PubMed  CAS  Google Scholar 

  31. Kasper J, Schor RH, Wilson VJ. Response of vestibular neurons to head rotations in vertical planes. II. Response to the neck stimulation and vestibular-neck interaction. J Neurophysiol. 1988;60:1765–78.

    PubMed  CAS  Google Scholar 

  32. Mergner T, Becker W, Deecke L. Canal-neck interaction in vestibular neurons of the cat’s cerebral cortex. Exp Brain Res. 1985;61:94–108.

    Article  PubMed  CAS  Google Scholar 

  33. Denoth F, Margherini PC, Pompeiano O, Stanojevic M. Responses of Purkinje cells of the cerebellar vermis to neck and macular vestibular inputs. Pflugers Arch. 1979;381:87–98.

    Article  PubMed  CAS  Google Scholar 

  34. Manzoni D, Pompeiano O, Bruschini L, Andre P. Neck input modifies the reference frame for coding labyrinthine signals in the cerebellar vermis: a cellular analysis. Neuroscience. 1999;3:1095–107.

    Article  Google Scholar 

  35. Shaikh AG, Meng H, Angelaki DE. Multiple reference frames for motion in the primate cerebellum. J Neurosci. 2004;24:4491–7.

    Article  PubMed  CAS  Google Scholar 

  36. Kleine JF, Guan Y, Kipiani E, Glonti L, Hoshi M, Buttner U. Trunk position influences vestibular responses of fastigial nucleus neurons in the alert monkey. J Neurophysiol. 2004;91:2090–100.

    Article  PubMed  CAS  Google Scholar 

  37. Grasso C, Barresi M, Scattina E, Orsini P, Vignali E, Bruschini L, et al. Tuning of human vestibulospinal reflexes by leg rotation. Hum Mov Sci. 2011;30:296–313.

    Article  PubMed  CAS  Google Scholar 

  38. Pompeiano O. Functional organization of the cerebellar projections to the spinal cord. Progr in Brain Res. 1967;25:282–321.

    Article  CAS  Google Scholar 

  39. Barresi M, Bruschini L, Manzoni D. Horizontal rotation of the foreleg modifies vestibular responses of vermal P-cells. Acta Physiol. 2006;188(S652, O10):185.

    Google Scholar 

  40. Pompeiano O, Andre P, Manzoni D. Spatiotemporal response properties of cerebellar Purkinje cells to animal displacement: a population analysis. Neurosci. 1997;81:609–26.

    Article  CAS  Google Scholar 

  41. Schor RH, Miller AD, Tomko DL. Responses to head tilt in cat central vestibular neurons. I. Direction of maximum sensitivity. J Neurophysiol. 1984;51:136–46.

    PubMed  CAS  Google Scholar 

  42. Schor RH, Angelaki DE. The algebra of neuronal response vectors. Ann NY Acad Sci. 1992;656:190–204.

    Article  PubMed  CAS  Google Scholar 

  43. Bush GA, Perachio AA, Angelaki DE. Encoding of head acceleration in vestibular neurons. I. Spatiotemporal response properties to linear acceleration. J Neurophysiol. 1993;69:2039–55.

    PubMed  CAS  Google Scholar 

  44. Manzoni D, Andre P, Pompeiano O. Changes in gain and spatiotemporal properties of the vestibulospinal reflex after injection of a GABA-A agonist in the cerebellar anterior vermis. Ves Res. 1997;7:7–20.

    Article  CAS  Google Scholar 

  45. Brooks HJ, Cullen KE. Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. J Neurosci. 2009;29:10499–511.

    Article  PubMed  CAS  Google Scholar 

  46. Bruschini L, Andre P, Pompeiano O, Manzoni D. Responses of Purkinje-cells of the cerebellar anterior vermis to stimulation of vestibular and somatosensory receptors. Neuroscience. 2006;142:235–45.

    Article  PubMed  CAS  Google Scholar 

  47. Gundappa-Sulur G, De Schutter E, Bower JM. Ascending granule cell axon: an important component of cerebellar cortical circuitry. J Comp Neurol. 1999;408:580–96.

    Article  PubMed  CAS  Google Scholar 

  48. Llinás R, Sugimori M. Electro-physiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol (London). 1980;305:197–213.

    Google Scholar 

  49. D’Angelo E, De Zeuwe CI. Timing plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;31:30–40.

    Article  Google Scholar 

  50. Coulter JD, Mergner T, Pompeiano O. Effect of static tilt on cervical spinoreticular tract neurons. J Neurophysiol. 1976;39:45–62.

    PubMed  CAS  Google Scholar 

  51. Kubin L, Magherini PC, Manzoni D, Pompeiano O. Responses of lateral reticular nucleus to sinusoidal rotation of neck in the decerebrate cat. Neurosci. 1981;6:1277–90.

    Article  CAS  Google Scholar 

  52. Ito M. The Cerebellum and Neural Control. New York: Raven; 1994.

    Google Scholar 

  53. Pompeiano O, Horn E, d’Ascanio P. Locus coeruleus and dorsal pontine reticular influences on the gain of vestibulospinal reflexes. Prog Brain Res. 1991;88:435–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present investigation was supported by grants of the Italian Space Agency (ASI, DCMC project and grant I/R/335/02) and of the University of Pisa. We thank M. Vaglini, G. Bresciani, P. Orsini, G. Montanari, and E. Cardaci for their valuable technical assistance and Mr. G. Bertolini for animal care.

Conflict of interest notification page

We declare that none of the authors has financial or personal relationships (consultancies, stock ownership, equity interests, patent-licensing arrangements) that might bias the submitted paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Manzoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barresi, M., Bruschini, L., Volsi, G.L. et al. Effects of Leg-to-Body Position on the Responses of Rat Cerebellar and Vestibular Nuclear Neurons to Labyrinthine Stimulation. Cerebellum 11, 212–222 (2012). https://doi.org/10.1007/s12311-011-0298-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0298-6

Keywords

Navigation