Skip to main content

Advertisement

Log in

Processing Frozen Concentrated Orange Juice (FCOJ) by High Pressure Homogenization (HPH) Technology: Changes in the Viscoelastic Properties

  • Original Paper
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The rheological properties of a fluid have an important role in process development and optimization. Due to its high concentration, frozen concentrated orange juice (FCOJ) shows viscoelastic behaviour, especially at low temperatures. In this study, high pressure homogenization (HPH) processing (0, 25, 50, 75, 100 and 150 MPa) was used to change the viscoelastic properties of FCOJ. The rheological behaviour of the FCOJ, before and after HPH processing, was evaluated using dynamic frequency sweep procedures. The storage (G′) and loss (G″) moduli were modelled as a function of the oscillatory frequency using the power law. The sample processed at 0 MPa showed G′ > G″. On the other hand, all other samples presented G″ > G′. Both the elastic and viscous behaviours decreased with increasing homogenization pressure. The power law parameters were then modelled as a function of the homogenization pressure using exponential functions. Also, the Cox–Merz rule was verified for all the samples, showing good applicability when a linear mathematical modification was applied. The reduction in the elastic and viscous components was explained by the reduction in particle size and molecular size of the serum constituents. A decrease in viscoelasticity leads to less resistance to flow and therefore to lower energy costs for the FCOJ process. These results are useful to understand the phenomena leading to an industrial application of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α :

Linear modification of the Cox–Merz rule, Eq. 8 (–)

β :

Linear modification of the Cox–Merz rule, Eq. 9 (–)

\( \dot{\gamma } \) :

Shear rate (s−1)

η :

Viscosity (Pa s)

η a :

Apparent viscosity (Pa s)

η*:

Complex viscosity (Pa s)

σ :

Shear stress (Pa)

σ 0 :

Yield stress (Pa)

ω :

Oscillatory frequency (Hz)

G′:

Storage (elastic) modulus (Pa)

G″:

Loss (viscous) modulus (Pa)

G*:

Complex modulus (Pa)

k′:

Consistency coefficient for the storage modulus power law (Eq. 1) (Pa sn)

k″:

Consistency coefficient for the loss modulus power law (Eq. 2) (Pa sn)

n′:

Behaviour coefficient for the storage modulus power law (Eq. 1) (–)

n″:

Behaviour coefficient for the loss modulus power law (Eq. 2) (–)

P H :

Homogenization pressure (MPa)

tan δ :

Loss tangent = G″/G′ (–)

References

  1. Ahmed J, Ramaswamy HS (2006) Viscoelastic and thermal characteristics of vegetable puree-based baby foods. J Food Process Eng 29:219–233

    Article  Google Scholar 

  2. Alvarez MD, Canet W (2013) Dynamic viscoelastic behavior of vegetable-based infant purees. J Texture Stud 44:205–224

    Article  Google Scholar 

  3. Alvarez MD, Fernández C, Canet W (2004) Rheological behaviour of fresh and frozen potato puree in steady and dynamic shear at different temperatures. Eur Food Res Technol 218:544–553

    Article  CAS  Google Scholar 

  4. Augusto PED, Vitali AA (2014) Assessing juice quality: advances in the determination of rheological properties of fruit juices and derivatives. In: Falguera V, Ibarz A (eds) Juice processing: quality, safety and value-added opportunities, 1st edn. CRC Press, Boca Raton, pp 83–136

    Chapter  Google Scholar 

  5. Augusto PED, Falguera V, Cristianini M, Ibarz A (2011) Influence of fibre addition on the rheological proprieties of peach juice. Int J Food Sci Technol 46:1086–1092

    Article  Google Scholar 

  6. Augusto PED, Ibarz A, Cristianini M (2012) Effect of high pressure homogenization (HPH) on the rheological properties of a fruit juice serum model. J Food Eng 111:474–477

    Article  Google Scholar 

  7. Augusto PED, Ibarz A, Cristianini M (2012) Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: time-dependent and steady-state shear. J Food Eng 111:570–579

    Article  Google Scholar 

  8. Augusto PED, Falguera V, Cristianini M, Ibarz A (2013) Viscoelastic properties of tomato juice: applicability the Cox–Merz rule. Food Bioprocess Technol 6(3):839–843

    Article  CAS  Google Scholar 

  9. Augusto PED, Ibarz A, Cristianini M (2013) Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: viscoelastic properties and the Cox–Merz rule. J Food Eng 114:57–63

    Article  Google Scholar 

  10. Bayod E, Willers EP, Tornberg E (2008) Rheological and structural characterization of tomato paste and its influence on the quality of ketchup. Food Sci Technol 41(7):1289–1300

    CAS  Google Scholar 

  11. Bengtsson H, Tornberg E (2011) Physicochemical characterization of fruit and vegetable fiber suspensions. I: effect of homogenization. J Texture Stud 42(4):268–280

    Article  Google Scholar 

  12. Betoret E, Betoret N, Carbonell JV, Fito P (2009) Effects of pressure homogenization on particle size and the functional properties of citrus juices. J Food Eng 92:18–23

    Article  Google Scholar 

  13. Betoret E, Sentadreu E, Betoret N, Fito P (2012) Homogenization pressures applied to citrus juice manufacturing. Functional properties and application. J Food Eng 111(1):28–33

    Article  Google Scholar 

  14. Campos FP, Cristianini M (2007) Inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum in orange juice using ultra high-pressure homogenization. Innov Food Sci Emerg Technol 8:226–229

    Article  CAS  Google Scholar 

  15. Canet W, Alvarez MD, Fernández C, Luna P (2005) Comparisons of methods for measuring yield stresses in potato puree: effect of temperature and freezing. J Food Eng 68:143–153

    Article  Google Scholar 

  16. Carbonell JV, Navarro JL, Izquierdo L, Sentandreu E (2013) Influence of high pressure homogenization and pulp reduction on residual pectinmethylesterase activity, cloud stability and acceptability of Lane Late orange juice: a study to obtain high quality orange juice with extended shelf life. J Food Eng 119:696–700

    Article  CAS  Google Scholar 

  17. Cerdán-Calero M, Izquierdo L, Sentandreu E (2013) Valencia Late orange juice preserved by pulp reduction and high pressure homogenization: sensory quality and gas chromatography–mass spectrometry analysis of volatiles. Food Sci Technol 51:476–483

    Google Scholar 

  18. Corredig M, Wicker L (2001) Changes in the molecular weight distribution of three commercial pectins after valve homogenization. Food Hydrocoll 15:17–23

    Article  CAS  Google Scholar 

  19. Croak S, Corredig M (2006) The role of pectin in orange juice stabilization: effect of pectin methylesterase and pectinase activity on the size of cloud particles. Food Hydrocoll 20:961–965

    Article  CAS  Google Scholar 

  20. da Silva JAL, Gonçalves MP, Rao MA (1993) Viscoelastic behaviour of mixtures of locust bean gum and pectin dispersions. J Food Eng 18:211–228

    Article  Google Scholar 

  21. Dogan H, Kokini JL (2007) Rheological properties of foods. In: Heldman DR, Lund DB (eds) Handbook of food engineering, 2nd edn. Taylor and Francis Group, Boca Raton

    Google Scholar 

  22. Dong X, Zhao M, Yang B, Yang X, Shi J, Jiang Y (2011) Effect of high-pressure homogenization on the functional property of peanut protein. J Food Process Eng 34:2191–2204

    Article  CAS  Google Scholar 

  23. Falguera V, Ibarz A (2010) A new model to describe flow behaviour of concentrated orange juice. Food Biophys 5:114–119

    Article  Google Scholar 

  24. FAO (Food and Agriculture Organization of United Nations) (2013) http://faostat.fao.org/site/339/default.aspx. Accessed 28 Sept 2013

  25. Floury J, Desrumaux A, Axelos MAV, Legrand J (2002) Degradation of methylcellulose during ultra-high pressure homogenisation. Food Hydrocoll 16:47–53

    Article  CAS  Google Scholar 

  26. Gunasekaran S, Ak MM (2000) Dynamic oscillatory shear testing of foods—selected applications. Trends Food Sci Technol 11:115–127

    Article  CAS  Google Scholar 

  27. Harte F, Venegas R (2010) A model for viscosity reduction in polysaccharides subjected to high pressure homogenization. J Texture Stud 41:49–61

    Article  Google Scholar 

  28. Ibarz A, Barbosa-Canovas GV (2003) Unit operations in food engineering. CRC Press, Boca Raton

    Google Scholar 

  29. Kin C, Yoo B (2006) Rheological properties of rice starch–xanthan gum mixtures. J Food Eng 72:120–128

    Google Scholar 

  30. Kubo MTK, Augusto PED, Cristianini M (2013) Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Res Int 51:170–179

    Article  CAS  Google Scholar 

  31. Lagoueyte N, Paquin P (1998) Effects of microfluidization on the functional properties of xanthan gum. Food Hydrocoll 12(3):365–371

    Article  CAS  Google Scholar 

  32. Leite TS, Augusto PED, Cristianini M (2013) Concentrated orange juice viscoelasticity processed by high pressure homogenization technology. In: International nonthermal food processing workshop

  33. Lopez-Sanchez P, Nijsse J, Blonk HCG, Bialek L, Schumm S, Langton M (2011) Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. J Sci Food Agric 91:207–217

    Article  CAS  Google Scholar 

  34. Lopez-Sanchez P, Svelander C, Bialek L, Schummm S, Langton M (2011) Rheology and microstructure of carrot and tomato emulsions as a result of high-pressure homogenization conditions. J Food Sci 76(1):E130–E140

    Article  CAS  Google Scholar 

  35. Massa A, González C, Maestro A, Labanda J, Ibarz A (2010) Rheological characterization of peach purees. J Texture Stud 41:532–548

    Article  Google Scholar 

  36. Moelants KRN, Cardinaels R, Jolie RP, Verrijssen TAJ, Van Buggenhout S, Zumalacarregui LM, Van Loey AM, Moldenaers P, Hendrickx ME (2013) Relation between particle properties and rheological characteristics of carrot-derived suspensions. Food Bioprocess Technol 6:2870–2883

    Article  CAS  Google Scholar 

  37. Oroian M, Amariei S, Escriche I, Gutt G (2013) Rheological aspects of Spanish honey. Food Bioprocess Technol 6:228–241

    Article  Google Scholar 

  38. Pereira EA, Brandão EM, Borges SV, Maia MCA (2008) Influence of concentration on the steady and oscillatory shear behavior of umbu pulp. Rev Bras Eng Agríc Ambient 12(1):87–90

    Article  Google Scholar 

  39. Poliseli-Scopel FH, Hernández-Herrero M, Guamis B, Ferragut V (2012) Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. Food Sci Technol 46(1):42–48

    CAS  Google Scholar 

  40. Ramamoorthi L, Lee Y, Brewer S (2009) Effect of food matrix and heat treatment on the rheological properties of salmon-based baby food. J Food Eng 95:432–437

    Article  Google Scholar 

  41. Rao MA (2005) Rheological properties of fluid foods. In: Rao MA, Rizvi SSH, Datta AK (eds) Engineering properties of foods, 3rd edn. CRC Press, Boca Raton

    Chapter  Google Scholar 

  42. Rao MA, Cooley HJ (1992) Rheological behavior of tomato pastes in steady and dynamic shear. J Texture Stud 23:415–425

    Article  Google Scholar 

  43. Sato ACK, Cunha RL (2009) Effect of particle size on rheological properties of jaboticaba pulp. J Food Eng 91:566–570

    Article  CAS  Google Scholar 

  44. Sentandreu E, Gurrea MC, Betoret N, Navarro JL (2011) Changes in orange juice characteristics due to homogenization and centrifugation. J Food Eng 105:241–245

    Article  CAS  Google Scholar 

  45. Servais C, Jones R, Roberts I (2002) The influence of the particle size distribution on the processing of food. J Food Eng 51:201–208

    Article  Google Scholar 

  46. Silva VM, Sato ACK, Barbosa G, Dacanal G, Ciro-Velásquez HJ, Cunha RL (2010) The effect of homogenisation on the stability of pineapple pulp. Int J Food Sci Technol 45:2127–2133

    Article  CAS  Google Scholar 

  47. Steffe JF (1996) Rheological methods in food process engineering, 2nd edn. Freeman Press, East Lansing

    Google Scholar 

  48. Tavares DT, Alcantara MR, Tadini CC, Telis-Romero J (2007) Rheological properties of frozen concentrated orange juice (FCOJ) as a function of concentration and subzero temperatures. Int J Food Prop 10(4):829–839

    Article  Google Scholar 

  49. Tonon RV, Alexandre D, Hubinger MD, Cunha RL (2009) Steady and dynamic shear rheological properties of açai pulp (Euterpe oleraceae Mart.). J Food Eng 92:425–431

    Article  CAS  Google Scholar 

  50. Tribst AAL, Augusto PED, Cristianini M (2013) Multi-pass high pressure homogenization of commercial enzymes: effect on the activities of glucose oxidase, neutral protease and amyloglucosidase at different temperatures. Innov Food Sci Emerg Technol 18:83–88

    Article  CAS  Google Scholar 

  51. Urbicain MJ, Lozano JE (1997) Thermal and rheological properties of foodstuffs in handbook of food engineering food. CRC Press, Boca Raton

    Google Scholar 

  52. Valencia C, Sánchez MC, Ciruelos A, Latorre A, Franco JM, Gallegos C (2002) Linear viscoelasticity of tomato sauce products: influence of previous tomato paste processing. Eur Food Res Technol 214:394–399

    Article  CAS  Google Scholar 

  53. Vélez-Ruíz J (2002) Relevance of rheological properties in food process engineering in engineering and food for the 21st century. CRC Press, Boca Raton

    Google Scholar 

  54. Vitali AA, Rao MA (1984) Flow properties of low-pulp concentrated orange juice: effect of temperature and concentration. J Food Sci 49:882–888

    Article  Google Scholar 

  55. Wang Y, Dong Li D, Wang L, Xuec J (2011) Effects of high pressure homogenization on rheological properties of flaxseed gum. Carbohydr Polym 83:489–494

    Article  CAS  Google Scholar 

  56. Wang B, Li D, Wang LJ, Liu YH, Adhikari B (2012) Effect of high-pressure homogenization on microstructure and rheological properties of alkali-treated highamylose maize stach. J Food Eng 113:61–68

    Article  CAS  Google Scholar 

  57. Wang T, Sun X, Zhou Z, Chen G (2012) Effects of microfluidization process on physicochemical properties of wheat bran. Food Res Int 48:742–747

    Article  Google Scholar 

  58. Yoo B, Rao MA (1996) Creep and dynamic rheological behavior of tomato concentrates: effect of concentration and finisher screen size. J Texture Stud 27:451–459

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the São Paulo Research Foundation (FAPESP) for funding project no. 2012/15253-9 and for awarding a scholarship to TS Leite (2012/17381-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago S. Leite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, T.S., Augusto, P.E.D. & Cristianini, M. Processing Frozen Concentrated Orange Juice (FCOJ) by High Pressure Homogenization (HPH) Technology: Changes in the Viscoelastic Properties. Food Eng Rev 7, 231–240 (2015). https://doi.org/10.1007/s12393-014-9082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-014-9082-y

Keywords

Navigation