Skip to main content
Log in

Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, the microstructure and crystallographic texture of pure Ti thin walls generated by Additive Manufacturing based on Laser Cladding (AMLC) are analyzed in depth. From the results obtained, it is possible to better understand the AMLC process of pure titanium. The microstructure observed in the samples consists of large elongated columnar prior β grains which have grown epitaxially from the substrate to the top, in parallel to the building direction. Within the prior β grains, α-Ti lamellae and lamellar colonies are the result of cooling from above the β-transus temperature. This transformation follows the Burgers relationship and the result is a basket-weave microstructure with a strong crystallographic texture. Finally, a thermal treatment is proposed to transform the microstructure of the as-deposited samples into an equiaxed microstructure of α-Ti grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. J. Donachie, Titanium: A Technical Guide, 2nd ed., pp.5–11, ASM International, Materials Park, Ohio, USA (2000).

    Google Scholar 

  2. C. Leyens and M. Peters, Titanium and Titanium Alloys, pp.423–466, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2003).

    Book  Google Scholar 

  3. I. P. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed., pp.299–366, Elsevier/Butterworth-Heinemann, Oxford, UK (2006).

    Google Scholar 

  4. Y. Oshida, Bioscience and Bioengineering of Titanium Materials, pp.217–256, Elsevier, Oxford, UK (2007).

    Google Scholar 

  5. N. Guo and M. C. Leu, Front. Mech. Eng. 8, 215 (2013).

    Article  Google Scholar 

  6. A. Sidambe, Materials (Basel) 7, 8168 (2014).

    Article  Google Scholar 

  7. R. Comesaña, F. Lusquiños, J. del Val, M. López-Álvarez, F. Quintero, J. Pou, et al. Acta Biomater. 7, 3476 (2011).

    Article  Google Scholar 

  8. R. Comesaña, F. Lusquiños, J. del Val, T. Malot, M. LópezÁlvarez, J. Pou, et al. J. Eur. Ceram. Soc. 31, 29 (2011).

    Article  Google Scholar 

  9. F. Arias-González, J. del Val, R. Comesaña, F. Lusquiños, F. Quintero, J. Pou, et al. 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications (ed. M. F. P. C. Martins Costa), p. 878546, SPIE, Porto, Portugal (2013).

  10. R. Comesaña, F. Lusquiños, J. del Val, F. Quintero, A. Riveiro, J. Pou, et al. Sci. Rep. 5, 10677 (2015).

    Article  Google Scholar 

  11. R. Comesaña, F. Lusquiños, J. del Val, M. López-Álvarez, F. Quintero, J. Pou, et al. Ceram. Int. 42, 2021 (2016).

    Article  Google Scholar 

  12. W. Xue, B. V. Krishna, A. Bandyopadhyay, and S. Bose, Acta Biomater. 3, 1007 (2007).

    Article  Google Scholar 

  13. C. Meacock and R. Vilar, Mater. Design 29, 353 (2008).

    Article  Google Scholar 

  14. G. P. Dinda, L. Song, and J. Mazumder, Metall. Mater. Trans. A 39, 2914 (2008).

    Article  Google Scholar 

  15. J. Chen, L. Xue, and S. H. Wang, J. Mater. Sci. 46, 5859 (2011).

    Article  Google Scholar 

  16. D. Clark, M. T. Whittaker, and M. R. Bache, Metall. Mater. Trans. B 43, 388 (2012).

    Article  Google Scholar 

  17. F. Lusquiños, R. Comesaña, A. Riveiro, F. Quintero, and J. Pou, Surf. Coat. Technol. 203, 1933 (2009).

    Article  Google Scholar 

  18. J. del Val, R. Comesaña, F. Lusquiños, M. Boutinguiza, A. Riveiro, J. Pou, et al. Surf. Coat. Technol. 204, 1957 (2010).

    Article  Google Scholar 

  19. B. Yao, X. L. Ma, F. Lin, and W. J. Ge, Rare Metals 34, 445 (2015).

    Article  Google Scholar 

  20. F. Arias-González, J. del Val, R. Comesaña, J. Penide, F. Lusquiños, J. Pou, et al. Appl. Surf. Sci. 374, 197 (2016).

    Article  Google Scholar 

  21. B. Baufeld, O. Van Der Biest, and S. Dillien, Metall. Mater. Trans. A 41, 1917 (2010).

    Article  Google Scholar 

  22. S. S. Al-Bermani, M. L. Blackmore, W. Zhang, and I. Todd, Metall. Mater. Trans. A 41, 3422 (2010).

    Article  Google Scholar 

  23. A. Safdar, L. Y. Wei, A. Snis, and Z. Lai, Mater. Charact. 65, 8 (2012).

    Article  Google Scholar 

  24. A. A. Antonysamy, J. Meyer, and P. B. Prangnell, Mater. Charact. 84, 153 (2013).

    Article  Google Scholar 

  25. H. K. Rafi, N. V. Karthik, H. Gong, T. L. Starr, and B. E. Stucker, J. Mater. Eng. Perform. 22, 3872 (2013).

    Article  Google Scholar 

  26. M. Simonelli, Y. Y. Tse, and C. Tuck, Metall. Mater. Trans. A 45, 2863 (2014).

    Article  Google Scholar 

  27. M. Simonelli, Y. Y. Tse, and C. Tuck, J. Mater. Res. 29, 1 (2014).

    Article  Google Scholar 

  28. P. Kobryn and S. Semiatin, J. Mater. Process. Technol. 135, 330 (2003).

    Article  Google Scholar 

  29. X. Wu, J. Liang, J. Mei, C. Mitchell, P. S. Goodwin, and W. Voice, Mater. Design 25, 137 (2004).

    Article  Google Scholar 

  30. S. H. Mok, G. Bi, J. Folkes, and I. Pashby, Surf. Coat. Technol. 202, 3933 (2008).

    Article  Google Scholar 

  31. S. H. Mok, G. Bi, J. Folkes, I. Pashby, and J. Segal, Surf. Coat. Technol. 202, 4613 (2008).

    Article  Google Scholar 

  32. C. Qiu, G. A. Ravi, C. Dance, A. Ranson, S. Dilworth, and M. M. Attallah, J. Alloy. Compd. 629, 351 (2015).

    Article  Google Scholar 

  33. S. Bahl, S. Suwas, and K. Chatterjee, RSC Adv. 4, 38078 (2014).

    Article  Google Scholar 

  34. A. J. Pinkerton and L. Li, CIRP Ann. -Manuf. Techn. 52, 181 (2003).

    Article  Google Scholar 

  35. A. J. Pinkerton and L. Li, Thin Solid Films 453-454, 600 (2004).

    Article  Google Scholar 

  36. A. J. Pinkerton and L. Li, Int. J. Adv. Manuf. Tech. 25, 471 (2005).

    Article  Google Scholar 

  37. M. S. Oh, J. Y. Lee, and J. K. Park, Metall. Mater. Trans. A 35, 3071 (2004).

    Article  Google Scholar 

  38. J. Mazumder, A. Schifferer, and J. Choi, Mater. Res. Innov. 3, 118 (1999).

    Article  Google Scholar 

  39. R. Ye, J. E. Smugeresky, B. Zheng, Y. Zhou, and E. J. Lavernia, Mat. Sci. Eng. A 428, 47 (2006).

    Article  Google Scholar 

  40. B. Zheng, Y. Zhou, J. E. Smugeresky, J. M. Schoenung, and E. J. Lavernia, Metall. Mater. Trans. A 39, 2228 (2008).

    Article  Google Scholar 

  41. S. M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, Addit. Manuf. 8, 36 (2015).

    Article  Google Scholar 

  42. L. Wang, S. D. Felicelli, and J. E. Craig, J. Manuf. Sci. Eng. 131, 041019 (2009).

    Article  Google Scholar 

  43. M. Gäumann, S. Henry, F. Cléton, J. D. Wagnière, and W. Kurz, Mat. Sci. Eng. A. 271, 232 (1999).

    Article  Google Scholar 

  44. T. Wang, Y. Y. Zhu, S. Q. Zhang, H. B. Tang, and H. M. Wang, J. Alloy. Compd. 632, 505 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias-González, F., del Val, J., Comesaña, R. et al. Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing. Met. Mater. Int. 24, 231–239 (2018). https://doi.org/10.1007/s12540-017-7094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7094-x

Keywords

Navigation