Skip to main content
Log in

Segmenting foreground objects in a multi-modal background using modified Z-score

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

This article presents a background subtraction method to detect moving objects across a stationary camera view. A hybrid pixel representation is presented to minimize the effect of shadow illumination. A non-recursive background model is developed to address the problem with gradual illumination change. Modified Z-score labeling is employed to analyze the sample variation of the temporal sequence to build a multi-modal background. The same measure is further applied to detect the foreground pixels against the stationary background classes. Morphological filtering is employed to suppress the sensor noise as well as to fill the camouflage holes. A decision rule is formulated that considers the period of being stationary of a foreground object and the period of being absence of a background class to tackle the object relocation problem. The proposed approach along with nine other state-of-the-art methods are compared on various image sequences taken from the Wallflower and the I2R datasets in terms of recall, precision, figure of merit, and percentage of correct classification. The tabular results, as well as the obtained figures demonstrate the efficacy of the proposed scheme over its counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Wang X (2013) Intelligent multi-camera video surveillance: a review. Pattern Recogn Lett 34(1):3–19

    Article  ADS  Google Scholar 

  • Doretto G, Sebastian T, Tu P, Rittscher J (2011) Appearance-based person reidentification in camera networks: problem overview and current approaches. J Ambient Intell Hum Comput 2(2):127–151

    Article  Google Scholar 

  • Albano P, Bruno A, Carpentieri B, Castiglione A, Castiglione A, Palmieri F, Pizzolante R, Yim K, You I (2014) Secure and distributed video surveillance via portable devices. J Ambient Intell Hum Comput 5(2):205–213

    Article  Google Scholar 

  • De Smedt F, Struyf L, Beckers S, Vennekens J, De Samblanx G, Goedemé T (2014) Faster and more intelligent object detection by combining opencl and kr. J Ambient Intell Hum Comput 5(5):635–643

    Article  Google Scholar 

  • Varga D, Szirányi T (2017) Robust real-time pedestrian detection in surveillance videos. J Ambient Intell Hum Comput 8(1):79–85

  • Setitra I, Larabi S (2014) Background subtraction algorithms with post-processing: a review. In: 22nd international conference on pattern recognition (ICPR), IEEE, pp 2436–2441

  • Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4–21

    Article  Google Scholar 

  • Elgammal A (2014) Background subtraction: theory and practice. Synth Lect Comput Vis 5(1):1–83

    Google Scholar 

  • Wren C, Azarbayejani A, Darrell T, Pentland A (1997) P finder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785

    Article  Google Scholar 

  • Stauffer C, Grimson W (1999) Adaptive background mixture models for real-time tracking. IEEE Comput Soc Conf Comput Vis Pattern Recogn 2:246–252

    Google Scholar 

  • Stauffer C, Grimson W (2000) Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell 22(8):747–757

    Article  Google Scholar 

  • Zivkovic Z (2004) Improved adaptive Gaussian mixture model for background subtraction. Int Conf Pattern Recogn IEEE 2:28–31

    Google Scholar 

  • Zivkovic Z, van der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780

    Article  ADS  Google Scholar 

  • Kim K, Halidabhongse T, Harwood D, Davis L (2005) Real-time foreground-background segmentation using codebook model. Real Time Imaging 11(3):172–185

    Article  Google Scholar 

  • Wu M, Peng X (2010) Spatio-temporal context for codebook-based dynamic background subtraction. AEU Int J Electron Commun 64(8):739–747

    Article  Google Scholar 

  • Fernandez-Sanchez E, Diaz J, Ros E (2013) Background subtraction based on color and depth using active sensors. Sensors (Basel, Switzerland) 13(7):8895–8915

    Article  ADS  PubMed  Google Scholar 

  • Lo B, Velastin S (2001) Automatic congestion detection system for underground platforms. International symposium on intelligent multimedia. video and speech processing, IEEE, pp 158–161

  • Cucchiara R, Grana C, Piccardi M, Prati A (2003) Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans Pattern Anal Mach Intell 25(10):1337–1342

    Article  Google Scholar 

  • Calderara S, Melli R, Prati A, Cucchiara R (2006) Reliable background suppression for complex scenes. In: ACM international multimedia conference and exhibition, pp 211–214

  • Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: principles and practice of background maintenance. IEEE Int Conf Comput Vis 1:255–261

    Google Scholar 

  • Zhong J, Sclaroff S (2003) Segmenting foreground objects from a dynamic textured background via a robust Kalman filter. IEEE Int Conf Comput Vis 1:44–50

    Google Scholar 

  • Wang H, Suter D (2006) Background subtraction based on a robust consensus method. Proc Int Conf Pattern Recognn 1:223–226

    Google Scholar 

  • Wang H, Suter D (2007) A consensus-based method for tracking: modelling background scenario and foreground appearance. Pattern Recogn 40(3):1091–1105

    Article  ADS  Google Scholar 

  • McHugh J, Konrad J, Saligrama V, Jodoin PM (2009) Foreground-adaptive background subtraction. IEEE Signal Process Lett 16(5):390–393

    Article  ADS  Google Scholar 

  • Heikkil M, Pietikinen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28(4):657–662

    Article  Google Scholar 

  • Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 1843:751–767

  • Piccardi M, Jan Z (2004) Mean-shift background image modelling. Int Conf Image Process IEEE 5:3399–3402

    Google Scholar 

  • Elgammal A, Duraiswami R, Davis LS (2001) Efficient non-parametric adaptive color modeling using fast Gauss transform. IEEE Comput Soc Conf Comput Vis Pattern Recogn IEEE 2:II-563

    Google Scholar 

  • Parag T, Elgammal A, Mittal A (2006) A framework for feature selection for background subtraction. IEEE Comput Soc Conf Comput Vis Pattern Recogn IEEE 2:1916–1923

    Google Scholar 

  • Hongxun Z, De X (2006) Fusing color and texture features for background model. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 4223 LNAI:887–893

  • El Baf F, Bouwmans T, Vachon B (2008) Foreground detection using the Choquet integral. In: International workshop on image analysis for multimedia interactive services, IEEE, pp 187–190

  • Azab MM, Shedeed H, Hussein AS, et al (2010) A new technique for background modeling and subtraction for motion detection in real-time videos. In: 17th IEEE international conference on image processing, IEEE, pp 3453–3456

  • Bouwmans T, El Baf F (2009) Modeling of dynamic backgrounds by type-2 fuzzy Gaussians mixture models. MASAUM J Basic Appl Sci 1(2):265–276

    Google Scholar 

  • El Baf F, Bouwmans T, Vachon B (2009) Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In: IEEE computer society conference on computer vision and pattern recognition workshops, IEEE, pp 60–65

  • Kim W, Kim C (2012) Background subtraction for dynamic texture scenes using fuzzy color histograms. IEEE Signal Process Lett 19(3):127–130

    Article  ADS  Google Scholar 

  • Culibrk D, Marques O, Socek D, Kalva H, Furht B (2007) Neural network approach to background modeling for video object segmentation. IEEE Trans Neural Netw 18(6):1614–1627

    Article  PubMed  Google Scholar 

  • Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7):1168–1177

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Maddalena L, Petrosino A (2010) A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection. Neural Comput Appl 19(2):179–186

    Article  Google Scholar 

  • Li L, Huang W, Gu I, Tian Q (2003) Foreground object detection from videos containing complex background. In: ACM international multimedia conference and exhibition, pp 2–10

  • Gevers T, Smeulders A (1999) Color-based object recognition. Pattern Recogn 32(3):453–464

    Article  ADS  Google Scholar 

  • Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol 49(4):764–766

    Article  Google Scholar 

  • Iglewicz B, Hoaglin DC (1993) How to detect and handle outliers, vol 16. American Society for Quality Control Press, Milwaukee

    Google Scholar 

  • Sheikh Y, Shah M (2005) Bayesian modeling of dynamic scenes for object detection. IEEE Trans Pattern Anal Mach Intell 27(11):1778–1792

    Article  PubMed  Google Scholar 

  • Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Hati K, Sa P, Majhi B (2013) Intensity range based background subtraction for effective object detection. IEEE Signal Process Lett 20(8):759–762

    Article  ADS  Google Scholar 

  • Reddy V, Sanderson C, Lovell B (2013) Improved foreground detection via block-based classifier cascade with probabilistic decision integration. IEEE Trans Circuits Syst Video Technol 23(1):83–93

    Article  Google Scholar 

  • Sobral A, Baker C, Bouwmans T, Zahzah EH (2014) Incremental and multi-feature tensor subspace learning applied for background modeling and subtraction. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 8814:94–103

  • Choudhury SK, Sa PK, Bakshi S, Majhi B (2016) An evaluation of background subtraction for object detection vis-a-vis mitigating challenging scenarios. IEEE Access 4:6133–6150

    Article  Google Scholar 

  • Seo S (2006) A review and comparison of methods for detecting outliers in univariate data sets. Dissertation of M. Sc., Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, US

  • Goyal K, Singhai J (2017) Review of background subtraction methods using Gaussian mixture model for video surveillance systems. Artif Intell Rev:1–19. doi:10.1007/s10462-017-9542-x

  • Kumar S, Yadav J S (2017) Background Subtraction Method for Object Detection and Tracking. In: Proceeding of international conference on intelligent communication, control and devices:1057–1063

  • Szwoch G, Ellwart D, Czyżewski A (2016) Parallel implementation of background subtraction algorithms for real-time video processing on a supercomputer platform. J Real Time Image Process 11(1):111–125

    Article  Google Scholar 

  • Panda DK, Meher S (2016) Detection of moving objects using fuzzy color difference histogram based background subtraction. IEEE Signal Process Lett 23(1):45–49

    Article  ADS  Google Scholar 

  • Sajid H, Cheung S.C.S (2015) Background subtraction for static and moving camera. IEEE Int Conf Image Process:4530–4534

  • Shah M, Deng JD, Woodford BJ (2015) A Self-adaptive CodeBook (SACB) model for real-time background subtraction. Image Vis Comput 38:52–64

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Engineering Research Board (SERB) of India under Grant Number SB/FTP/ETA-0059/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambit Bakshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, S.K., Sa, P.K., Choo, KK.R. et al. Segmenting foreground objects in a multi-modal background using modified Z-score. J Ambient Intell Human Comput 15, 1213–1227 (2024). https://doi.org/10.1007/s12652-017-0480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-017-0480-x

Keywords

Navigation