Skip to main content

Advertisement

Log in

Flaxseed—a potential functional food source

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

There is currently much interest in phytochemicals as bioactive molecules of food. Functional foods are an emerging field in food science due to their increasing popularity among health conscious consumers. Flaxseed is cultivated in many parts of world for fiber, oil as well as for medicinal purposes and also as nutritional product. In this review, nutrients, anti-nutrients, functional properties, processing, metabolism and health benefits of bioactive molecules viz., essential fatty acids, lignans and dietary fiber of flaxseed are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adlercreutz H (1990) Western diet and western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Investig Suppl 201:3–23

    CAS  Google Scholar 

  • Adlercreutz H, Bannwart C, Wahala K, Makela T, Brunow G (1993) Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol 42:147–153

    Google Scholar 

  • Akande KE, Doma UD, Agu HO, Adamu HM (2010) Major anti nutrients found in plant protein sources: their effect on nutrition. Pak J Nutr 9:827–832

    CAS  Google Scholar 

  • Al-Okbi SY (2005) Highlights on functional foods, with special reference to flaxseed. J Nat Fibers 2(3):63–68

    CAS  Google Scholar 

  • Alpaslan M, Hayta M (2006) The effects of flaxseed, soy and corn flours on the textural and sensory properties of a bakery product. J Food Qual 29:617–627

    Google Scholar 

  • Arend WP, Dayer JM (1995) Inhibition of the production and effects of interleukin-1 and tumor necrosis factor α in rheumatoid arthritis. Arthritis Rheum 38:151–160

    CAS  Google Scholar 

  • Barcelo-Coblijn G, Murphy EJ (2009) Alpha-linolenic acid and its conversion to longer chain n3 fatty acids: benefits for human health and a role in maintaining tissue n3 fatty acid levels. Prog Lipid Res 48:355–374

    CAS  Google Scholar 

  • Beejmohun V et al (2007) Microwave-assisted extraction of the main phenolic compounds in flaxseed. Phytochem Anal 18:275–282

    CAS  Google Scholar 

  • Bhathena SJ, Ali AA, Haudenschild C, Latham P, Ranich T, Mohamed AI, Hansen CT, Velasquez MT (2003) Dietary flaxseed meal is more protective than soy protein concentrate against hypertriglycerdemia and steatosis of the liver in an animal model of obesity. J Am Coll Nutr 22:157–164

    Google Scholar 

  • Bhatty RS (1993) Further compositional analyses of flax: mucilage, trypsin inhibitors and hydrocyanic acid. J Am Oil Chem Soc 70:899–904

    CAS  Google Scholar 

  • Bliek AE, Turhan S (2009) Enhancement of the nutritional status of beef patties by adding flaxseed flour. Meat Sci 82:472–477

    Google Scholar 

  • Bozan B, Temelli F (2002) Supercritical CO2 extraction of flaxseed. J Am Oil Chem Soc 79:231–235

    CAS  Google Scholar 

  • Cann PA, Read NW, Holdsworth CD (1984) What is the benefit of coarse wheat bran in patients with irritable bowel syndrome? Gut 24:168–173

    Google Scholar 

  • Carter JF (1993) Potential of flaxseeds and flaxseed oil in baked goods and other products in human nutrition. Cereal Foods World 38:754–759

    Google Scholar 

  • Chen J, Liu X, Shi Y, Ma C (2007) Determination of the lignan secoisolariciresinol diglucoside from flaxseed (Linum usitatissimum) by HPLC. J Liq Chromatogr Relat Technol 30:533–544

    Google Scholar 

  • Chetana, Sudha ML, Begum K, Ramasarma PR (2010) Nutritional characteristics of linseed/flaxseed (Linum usitatissimum) and its application in muffin making. J Texture Stud 41:563–578

    Google Scholar 

  • Choo W, Birch J, Dufour JP (2007a) Physicochemical and stability characteristics of flaxseed oils during pan-heating. J Am Oil Chem Soc 84:735–740

    CAS  Google Scholar 

  • Choo W, Birch J, Dufour JP (2007b) Physiochemical and quality chartacteristicsof cold-pressed flaxseed oils. J Food Comp Anal 20:201–211

    Google Scholar 

  • Chung M, Lei B, Li-Chan E (2005) Isolation and structural characterization of the major protein fraction from Nor Man flaxseed (Linum usitatissimum L.). Food Chem 90:271–279

    CAS  Google Scholar 

  • Clavel T, Borrmann D, Braune A, Dore J, Blaut M (2006) Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 12:140–147

    CAS  Google Scholar 

  • Clavel T, Lippman R, Gavini F, Dore J, Blaut M (2007) Clostridium saccharogumia spnov., and Lactonifactorlongoviformisgen. nov., spnov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30:16–26

    CAS  Google Scholar 

  • Cui W, Mazza G (1996) Physiochemical characteristics of flaxseed gum. Food Res Int 29:397–402

    CAS  Google Scholar 

  • Cunnane SC et al (1993) High linolenic acid flaxseed (Linum usitatissimum): some nutritional properties in humans. Br J Nutr 69:443–453

    CAS  Google Scholar 

  • Cunnane SC, Hamadeh MJ, Liede AC, Thompson LU, Wolever TMS, Jenkins DJA (1994) Nutritional attributes of flaxseed in healthy young adults. Am J Clin Nutr 61:62–68

    Google Scholar 

  • de Lorgeril M, Salen P, Laporte F, de Leiris J (2001) Alpha-linolenic acid in the prevention and treatment of coronary heart disease. Eur Heart J Suppl D 3:D26–D32

    Google Scholar 

  • Dev DK, Quensel E (1988) Preparation and functional properties of linseed protein products containing differing levels of mucilage. J Food Sci 53:1834–1837, 1857

    Google Scholar 

  • Dieken H (1992) Use of flaxseed as a source of omega-3 fatty acids in human nutrition. Proc Flax Inst 54:1–4

    Google Scholar 

  • Du H et al (2010) Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am J Clin Nutr 91:329–336

    CAS  Google Scholar 

  • Dubois V, Breton S, Linder M, Fanni J, Parmentier M (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109:710–732

    CAS  Google Scholar 

  • Erdman JW (1979) Oilseed phytates: nutritional implications. J Am Oil Chem Soc 56:736–741

    CAS  Google Scholar 

  • Fedenuik RW, Biliaderis CG (1994) Composition and physiochemical properties of linseed (Linum usitatissimum) mucilage. J Agric Food Chem 42:240–247

    Google Scholar 

  • Feng D, Shen Y, Chavez ER (2003) Effectiveness of different processing methods in reducing hydrogen cyanide content of flaxseed. J Sci Food Agric 83:836–841

    CAS  Google Scholar 

  • Fukumitsu S, Aida K, Shimizu H, Toyoda K (2010) Flaxseed lignan lowers blood cholesterol and decreases liver disease risk factors in moderately hypercholesterolemic men. Nutr Res 30:441–446

    CAS  Google Scholar 

  • Funk CD (2001) Prostaglandlins and leukotrienes: advances in eicasanoid biology. Science 294:1871–1875

    CAS  Google Scholar 

  • Gabor H, Abraham S (1986) Effect of dietary menhaden oil on tumor cell loss and the accumulation of mass of a transplantable mammary adenocarcinoma in BALB/c mice. J Natl Cancer Inst 76:1223–1231

    CAS  Google Scholar 

  • Gambus H, Gambus F, Pastuszka D (2009) Quality of gluten-free supplemented cakes and biscuits. Int J Food Sci Nutr 60:31–50

    CAS  Google Scholar 

  • Ganorkar PM, Jain RK (2013) Flaxseed—a nutritional punch. Int Food Res J 20:519–525

    CAS  Google Scholar 

  • Goh KKT, Ye A, Dale N (2006) Characterisation of ice cream containing flaxseed oil. Intl J Food Sci Technol 41:946–953

    CAS  Google Scholar 

  • Gonzalez MJ, Schemmel RA, Gray J, Dugan L, Sheffield LG, Welsch CW (1991) Effect of dietary fat on growth of MCF-7 and MDAMB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis 12:1231–1235

    CAS  Google Scholar 

  • Gopalan C, Sastri R, Balasubramanian SC (2004) Nutritive value of Indian foods. National Institute of Nutrition, ICMR, Hyderabad, 52 pp

    Google Scholar 

  • Green A (1995) Linola-new flaxseed breed low in alpha-linolenic acid. Australian New Crops Newsletter

  • Hadley M (1996) Stability of flaxseed oil used in cooking/stir frying. In: Proceedings of the 56th Flax Institute of the United States of America, North Dakota, pp 55–59

  • Hall CA III, Manthey FA, Lee RE, Niehaus M (2005) Stability of α-linolenic acid and secoisolariciresinol diglucoside in flaxseed-fortified macaroni. J Food Sci 70:C483–C489

    CAS  Google Scholar 

  • Hosseinian FS, Beta T (2009) Patented techniques for the extraction and isolation of secoisolariciresinol diglucoside from flaxseed. Recent Patents Food Nutr Agric 25:25–31

    Google Scholar 

  • Hosseinian FS, Rowland GG, Bhirud PR, Dyck JH, Tyler RT (2004) Chemical composition and physicochemical and hydrogenation characteristics of high-palmitic acid solin (low-linolenic acid flaxseed) oil. J Am Oil Chem Soc 81:185–188

    CAS  Google Scholar 

  • Hu C, Yuan YV, Kitts DD (2007) Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem Toxicol 45:2219–2227

    CAS  Google Scholar 

  • Hussain S (2009) Utilization of flaxseed as a functional food. PhD Thesis submitted at National Institute of Food Science and Technology University of Agriculture, Faisalabad, Pakistan

  • Hussain S, Anjum FM, Butt MS, Khan MI, Asghar A (2006) Physical and sensoric attributes of flaxseed flour supplemented cookies. Turk J Biol 30:87–92

    Google Scholar 

  • Hutchins AM, Slavin JL (2003) Effects of flaxseed on sex hormone metabolism. In: Thompson LU, Cunnane SC (eds) Flaxseed in human nutrition, 2nd edn. AOCS Press, Champaign, pp 126–149

    Google Scholar 

  • Hyvarinen HK, Pihlava J, Hiidenhovi JA, Hietaniemi V, Korhonen HJT, Ryhanen E (2006a) Effect of processing and storage on the stability of flaxseed lignan added to dairy products. J Agric Food Chem 54:8788–8792

    Google Scholar 

  • Hyvarinen HK, Pihlava J, Hiidenhovi JA, Hietaniemi V, Korhonen HJT, Ryhanen E (2006b) Effect of processing and storage on the stability of flaxseed lignan added to bakery products. J Agric Food Chem 54:48–53

    Google Scholar 

  • James MJ, Gibson RA, Cleland LG (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr Suppl 71:343S–348S

    CAS  Google Scholar 

  • Jenkins DJA, Wolever TMS, Kalmusky J (1987) Low glycemic index diet in hyperlipidemia: use of traditional starchy foods. Am J Clin Nutr 46:66–71

    CAS  Google Scholar 

  • Jin JS, Kakiuchi J, Hattori M (2007) Enantioselective oxidation of enterodiol to enterolactone by human intestinal bacteria. Biol Pharm Bull 30:2204–2206

    CAS  Google Scholar 

  • Johnsson P, Kamal-Eldin A, Lundgren LN, Aaman P (2000) HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds. J Agric Food Chem 48:5216–5219

    CAS  Google Scholar 

  • Kamal-Eldin A, Peerlkamp N, Johnsson P, Andersson R, Andersson RE, Lundgren LN, Aman P (2001) An oligomer from flaxseed composed of secoisolariciresinol diglucoside and 3-hydroxy-3-methyl glutaric acid residues. Photochemistry 58:587–590

    CAS  Google Scholar 

  • Kang JX (2007) Fat-1 transgenic mice: a new model for omega-3 research. Prostaglandins Leukot Essent Fat Acids 77:263–267

    CAS  Google Scholar 

  • Kapoor S, Sachdeva R, Kochhar A (2011) Flaxseed: a potential treatment of lowering blood glucose and lipid profile among diabetic females. Ind J Nutr Diet 48:529–536

    CAS  Google Scholar 

  • Kassis NM, Gigliotti JC, Beamer SK, Tou JC, Jaczynski J (2011) Characterization of lipids and antioxidant capacity of novel nutraceutical egg products developed with omega-3-rich oils. J Sci Food Agric. doi:10.1002/jsfa.4542

    Google Scholar 

  • Kaur N, Chugh V, Gupta AK (2012) Essential fatty acids as functional components of foods—a review. J Food Sci Technol. doi:10.1007/s13197-012-0677-0

    Google Scholar 

  • Khouryieh H, Aramouni F (2012) Physical and sensory characteristics of cookies prepared with flaxseed flour. J Sci Food Agric. doi:10.1002/jfsa.5642

    Google Scholar 

  • Kishk YMK, Elsheshetawy HE, Mahmoud EAM (2011) Influence of isolated flaxseed mucilage as a non-starch polysaccharide on noodle quality. Int J Food Sci 46:661–668

    Google Scholar 

  • Krajcova A, Schulzova V, Hajslova J, Bjelkova M (2009) Lignans in flaxseed. Czech J Food Sci 27:252–255

    Google Scholar 

  • Kremer JM (2000) n-3 fatty acid supplements in rheumatoid arthritis. Am J Clin Nutr 71:349S–351S

    CAS  Google Scholar 

  • Kristensen M, Jensen MG, Aarestrup J, Petersen KEN, Sondergaard L, Mikkelsen MS, Astrup A (2012) Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depends on food type. Nutr Metab 9:8

    CAS  Google Scholar 

  • Kritchevsky D (1979) Metabolic effects of dietary fiber (clinical nutrition symposium). West J Med 130:123–127

    CAS  Google Scholar 

  • Lee RE, Manthey FA, Hall CA III (2004) Content and stability of hexane extractable lipid at various steps of producing macaroni containing ground flaxseed. J Food Process Preserv 28:133–144

    CAS  Google Scholar 

  • Li SX, Cherain G, Hardin RT, Sim JS (1996) Storage, heating and tocopherols affect cholesterol oxide formation in food oils. J Agric Food Chem 44:3830–3834

    CAS  Google Scholar 

  • Lipilina E, Ganji V (2009) Incorporation of ground flaxseed into bakery products and its effect on sensory and nutritional characteristics—a pilot study. J Foodserv 20:52–59

    Google Scholar 

  • Liu S, Low NH, Nickerson MT (2010) Entrapment of flaxseed oil within gelatin-gum arabic capsules. J Am Oil Chem Soc 87:809–815

    CAS  Google Scholar 

  • Locke CA, Stoll AL (2001) Omega-3 fatty acid in major depression. World Rev Nutr Diet 89:173–185

    CAS  Google Scholar 

  • Lukaszewicz M, Szopa J, Krasowska A (2004) Susceptibility of lipids from different flax cultivars to per oxidation and its lowering by added antioxidants. Food Chem 88:225–231

    CAS  Google Scholar 

  • Lunn J, Theobald HE (2006) The health effects of dietary unsaturated fatty acids. British Nutrition Foundation. Nutr Bull 31:178–224

    Google Scholar 

  • Macmohan B, Godson C (2004) Lipoxins: endogenous regulators of inflammation. Am J Physiol Ren Physiol 286:F189–F201

    Google Scholar 

  • Madhusudan KT, Singh N (1984) Effect of heat treatment on the functional properties of linseed meal. J Sci Food Agric 35:29–35

    Google Scholar 

  • Madhusudan KT, Singh N (1985) Isolation and characterization of major protein fraction (12 S) of flaxseed proteins. J Agric Food Chem 33:673–677

    Google Scholar 

  • Maes M, Smith R, Christophe A, Cosyns P, Desnydes R, Meltzer H (1996) Fatty acid composition in major depression: decreased omega 3 fractions in cholesteroyl esters and increased C20:4 omega-6/ C20:5 omega-3 ratio in cholesteroyl esters and phospholipids. J Affect Disord 38:35–46

    CAS  Google Scholar 

  • Malkki Y (2004) Trends in dietary fiber research and development: a review. Acta Aliment 33:39–62

    CAS  Google Scholar 

  • Mandokhot VM, Singh N (1979) Studies on linseed (Linum usitatissimum) as a protein source for poultry. I. Process of demucilaging and dehulling of linseed and evaluation of processed materials by chemical analysis and with rats and chicks. J Food Sci Technol 16:25–31

    CAS  Google Scholar 

  • Manthey FA, Sinha S, Wolf-Hall CE, Hall CA III (2008) Effect of flaxseed flour on shelf life of refrigerated pasta. J Food Process Preserv 32:75–87

    Google Scholar 

  • Martinez-Flores H, Barrera E, Garnica-Romo M, Penagos C, Saavedra J, Macazaga-Alvarez R (2006) Functional characteristics of protein flaxseed concentrated obtained applying a response surface methodology. J Food Sci 71:495–498

    Google Scholar 

  • Mazur W, Uehara M, Wahala K, Adlercreutz H (2000) Phytoestrogen content of berries, and plasma concentrations and urinary excretion of enterolactone after a single strawberry-meal in human subjects. Br J Nutr 83:381–387

    CAS  Google Scholar 

  • Mazza G (2008) Production, Processing and Uses of Canadian Flax. First CGNA International Workshop, Temuco, Chile, August 3–6

  • Mazza G, Biliaderis CG (1989) Functional properties of flaxseed mucilage. J Food Sci 54:1302–1307

    CAS  Google Scholar 

  • Meagher LP, Beecher GR (2000) Assessment of data on the lignin content of foods. J Food Comp Anal 13:935–947

    CAS  Google Scholar 

  • Meagher LP, Beecher GR, Flanagan VP, Li BW (1999) Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. J Agric Food Chem 47:3173–3180

    CAS  Google Scholar 

  • Moller NP, Scholz-Ahrens KE, Ross N, Schrezenmeir J (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 47:171–182

    CAS  Google Scholar 

  • Morris DH (2007) Flax—a health and nutrition primer, 4th edn. Available from: www.flaxcouncil.ca

  • Morris MC, Evans DA, Tangney CC (2005) Relation of the tocopherol forms to incident alzheimer disease and to cognitive change. Am J Clin Nutr 81:508–514

    CAS  Google Scholar 

  • Morton MS, Chan PSF, Cheng C, Blacklock N, Matos-Ferreira A, Abranches-Montero L, Correia R, Lloyd S, GriYths K (1997) Lignans and isoflavonoids in plasma and prostatic fluid in men: samples from Portugal, Hong Kong, and the United Kingdom. Prostate 32:122–128

    CAS  Google Scholar 

  • Mridula D, Singh KK, Barnwal P (2011) Development of omega-3 rich energy bar with flaxseed. J Food Sci Technol. doi:10.1007/s13197-011-0425-x

    Google Scholar 

  • Mueller K, Eisner P, Yoshie-Stark Y, Nakada R, Kirchoff E (2010) Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.). J Food Eng 98:453–460

    CAS  Google Scholar 

  • Muir AD (2006) Flax lignans—analytical methods and how they influence our understanding of biological activity. J AOAC Int 89:1147–1157

    CAS  Google Scholar 

  • Murphy PA, Hendrich S (2002) Phytoestrogens in foods. Adv Food Nutr Res 44:195–246

    CAS  Google Scholar 

  • Nash AM, Frankel EM (1986) Limited extraction of soybeans with hexane. J Am Oil Chem Soc 63:244–246

    CAS  Google Scholar 

  • Ogunronbi O, Jooste PJ, Abu J, Merwe B (2011) Chemical composition, storage stability and effect of cold-pressed flaxseed oil cake inclusion on bread quality. J Food Process Preserv 35:64–79

    CAS  Google Scholar 

  • Oomah BD (2001) Flaxseed as a functional food source. J Sci Food Agric 81:889–894

    CAS  Google Scholar 

  • Oomah BD, Mazza G (1993) Flaxseed proteins—a review. Food Chem 48:109–114

    CAS  Google Scholar 

  • Oomah BD, Mazza G (1997) Effect of dehulling on chemical composition and physical properties of flaxseed. Lebensm Wiss Technol 30:135–140

    CAS  Google Scholar 

  • Oomah BD, Mazza G (1998) Compositional changes during commercial processing of flaxseed. Ind Crop Prod 9:29–37

    CAS  Google Scholar 

  • Oomah BD, Mazza G, Kenaschuk EO (1992) Cyanogenic compounds in flaxseed. J Agric Food Chem 40:346–348

    Google Scholar 

  • Oomah BD, Kenaschuk EO, Mazza G (1996a) Phytic acid content of flaxseed as influenced by cultivar, growing season and location. J Agric Food Chem 44:2663–2666

    CAS  Google Scholar 

  • Oomah BD, Mazza G, Kenaschuk EO (1996b) Dehulling characteristics of flaxseed. Lebensm Wiss Technol 29:245–250

    CAS  Google Scholar 

  • Pan Q (1990) Flax production, utilization and research in China. In: Proceedings of the 53rd Flax Institute of the United States of America, North Dakota, pp 59–63

  • Payne TJ (2000) Promoting better health with flaxseed in bread. Cereal Foods World 45(3):102–104

    Google Scholar 

  • Pella D, Dubnov G, Singh RB, Sharma R, Berry EM (2003) Effects of an Indo-Mediterranean diet on the omega-6/ omega-3 ratio in patients at high risk of coronary artery disease. The Indian Paradox. Vol.92. Basel, Karger: World Rev Nutr Diet 74–80

  • Prasad K (1997) Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed. Mol Cell Biochem 168:117–123

    CAS  Google Scholar 

  • Prasad K (2000) Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. Int J Angiol 9:220–225

    Google Scholar 

  • Prasad K (2004) Antihypertensive activity of secoisolariciresinol diglucoside (SDG) isolated from flaxseed: role of guanylatecyclase. Int J Angiol 13:7–14

    CAS  Google Scholar 

  • Rabetafika HN, Remoortel VV, Danthine S, Paquot M, Blecker C (2011) Flaxseed proteins: food uses and health benefits. Int J Food Sci Technol 46:221–228

    CAS  Google Scholar 

  • Raffaelli B, Hoikkala A, Leppala E, Wahala K (2002) Enterolignans. J Chromatogr 777:29–43

    CAS  Google Scholar 

  • Rajiv J, Indrani D, Prabhasankar P, Rao GV (2011) Rheology, fatty acid profile and storage characteristics of cookies as influenced by flax seed (Linum usitatissimum). J Food Sci Technol. doi:10.1007/s13197-011-0307-2

    Google Scholar 

  • Ratnayake WMN, Behrens WA, Fischer PWF, L’Abbe MR, Mongeau R, Beare-Rogers JL (1992) Flaxseed: chemical stability and nutritional properties. Proc Flax Inst 54:37

    Google Scholar 

  • Rebole A, Rodriguez ML, Ortiz LT, Alzueta C, Centeno C, Trevino J (2002) Mucilage in linseed: effects on the intestinal viscosity and nutrient digestion in broiler chicks. J Sci Food Agric 82:1171–1176

    CAS  Google Scholar 

  • Ridges L, Sunderland R, Moerman K, Meyer B, Astheimer L, Howe P (2001) Cholesterol lowering benefits of soy and linseed enriched foods. Asia Pac J Clin Nutr 10:204–211

    CAS  Google Scholar 

  • Riediger ND, Othman R, Fitz E, Pierce GN, Suh M, Moghadasian MH (2009) Low n6:n3 fatty acid ratio, with fish or flaxseed oil, in high fat diet improves plasma lipids and beneficially alters tissue fatty acid composition in mice. Eur J Nutr 47:153–160

    Google Scholar 

  • Rubilar M, Gutiérrez C, Verdugo M, Shene C, Sineiro J (2010) Flaxseed as a source of functional ingredients. J Soil Sci Plant Nutr 10:373–377

    Google Scholar 

  • Saini A, Harjai K, Mohan H, Punia RPS, Chhibber S (2010) Long-term flaxseed oil supplementation diet protects BALB/c mice against Streptococcus pneumonia infection. Med Microbiol Immunol 199:27–34

    CAS  Google Scholar 

  • Salimnen HK, Kauppinen TV, Virtanen HT, Rananiemi TS, Ryhanen HE-L (2010) Fermented Food Product. United States Patent Application Publication. Patent No.: US 2010/0203194 A1

  • Schweigerer L, Christeleit K, Fleischmann G, Adlercreutz H, Wahala K, Hase T, Schwab R, Ludwig R, Fotsis T (1992) Identification in human urine of a natural growth inhibitor of cells derived from solid pediatric tumors. Eur J Clin Investig 22:260–264

    CAS  Google Scholar 

  • Shakir KAF, Madhusudan B (2007) Hypocholesterolemic and hepatoprotective effects of flaxseed chutney: evidence from animal studies. Int J Clin Biochem 22:117–121

    Google Scholar 

  • Shankar D, Agarwal YC, Sarker BC, Singh BPN (1997) Enzymatic hydrolysis in conjuction with conventional pre-treatments to soyabean for enhanced oil availability and recovery. J Am Oil Chem Soc 74:1543–1547

    CAS  Google Scholar 

  • Shearer AEH, Davies CGA (2005) Physicochemical properties of freshly baked and stored whole-wheat muffins with and without flaxseed meal. J Food Qual 28:137–153

    Google Scholar 

  • Sicilia T, Niemeyer HB, Honig DM, Metzler M (2003) Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. J Agric Food Chem 51:1181–1188

    CAS  Google Scholar 

  • Simopoulos AP (1999) Essential fatty acids in health and chronic diseases. Am J Clin Nutr 70:560–569

    Google Scholar 

  • Simpolous AP (2004) Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev Int 20:77–90

    Google Scholar 

  • Simpolous AP (2011) Evolutionary aspects of diet: the omege-6/ omega-3 ratio and the brain. MolNeurbiol. Published online: 29 January, 2011. Humana Press

  • Singer FAW, Taha FS, Mohammad SS, Gibriel A, El- Nawaway M (2011) Preparation of mucilage/protein products from flaxseed. Am J Food Technol 6:260–278

    CAS  Google Scholar 

  • Singh J, Bargale PC (2000) Development of a small capacity double stage compression screw press oil expression. J Food Eng 43:75–82

    Google Scholar 

  • Singh KK, Jhamb SA, Kumar R (2011a) Effect of pretreatments on performance of screw pressing for flaxseed. J Food Pocess Eng. doi:10.1111/j.1745-4530.2010.00606.x

    Google Scholar 

  • Singh KK, Mridula D, Rehal J, Barnwal P (2011b) Flaxseed: a potential source of food, feed and fiber. Criti Rev Food Sci Nutr 51:210–222

    CAS  Google Scholar 

  • Smith AK, Johnsen VL, Beckel AC (1946) Linseed proteins—alkali dispersion and acid precipitation. Ind Eng Chem 38:353–356

    CAS  Google Scholar 

  • Sok D, Cui HS, Kim MR (2009) Isolation and bioactivities of furfuran type lignan compounds from edible plants. Recent Patents Food Nutr Agric 1:87–95

    CAS  Google Scholar 

  • Spiller RC (1994) Pharmacology of dietary fiber. Pharmacol Ther 62:407–427

    CAS  Google Scholar 

  • Spychalla JP, Kinney AJ, Browse J (1997) Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proc Natl Acad Sci U S A 94:1142–1147

    CAS  Google Scholar 

  • Stewart S, Mazza G (2000) Effect of flaxseed gum on quality and stability of a model salad dressing. J Food Qual 23:373–390

    Google Scholar 

  • Struijs K, Vincken JP, Gruppen H (2009) Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol. J Appl Microbiol 107:308–317

    CAS  Google Scholar 

  • Sturgeon SR, Heersinka JL, Volpeb SL, Bertone-Johnsona ER, Puleoa E, Stanczykc FZ, Sabelawskid S, Wahalae K, Kurzerf MS, Bigelowa C (2008) Effect of dietary flaxseed on serum levels of estrogens and androgens in postmenopausal women. Nutr Cancer 60:612–618

    Google Scholar 

  • Susheelamma NS (1987) Isolation and properties of linseed mucilage. J Food Sci Technol 24:103–106

    Google Scholar 

  • Susheelamma NS (1989) Functional role of linseed (Linum usitatissimum L.) polysaccharide in steamed pudding (idli). J Food Sci Technol 26:16–20

    CAS  Google Scholar 

  • Tarpila A, Wennberg T, Tarpila S (2005) Flaxseed as a functional food. Curr Top Nutraceutical Res 3:167–188

    CAS  Google Scholar 

  • Tautorus CL, McCurdy AR (1990) Effect of randomization on oxidative stability of vegetable oils at two different temperatures. J Am Oil Chem Soc 67:525–530

    CAS  Google Scholar 

  • Thakur G, Mitra A, Pal K, Rousseau D (2009) Effect of flaxseed gum on reduction of blood glucose & cholesterol in type 2 diabetic patients. Int J Food Sci Technol 60:126–136

    CAS  Google Scholar 

  • Thompson LU, Rickard SE, Orcheson LJ, Seidl MM (1996) Flaxseed and its lignan and its oil components reduce mammary tumor growth at a late stage of carcinogenesis. Carcinogenesis 17:1373–1376

    CAS  Google Scholar 

  • Tiemeier H, van Tuijl HR, Hofman A, Kiliaan A, Breteler MMB (2003) Plasma fatty acid composition and depression are associated in the elderly: the Rotterdam Study. Am J Clin Nutr 78:40–46

    CAS  Google Scholar 

  • Tolkachev ON, Zhuchenko AA (2000) Biologically active substances of flax: medicinal and nutritional properties (a review). Pharm Chem J 34:360–367

    CAS  Google Scholar 

  • Toure A, Xueming X (2010) Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components and health benefits. Compr Rev Food Sci Food Saf 9:261–269

    CAS  Google Scholar 

  • Wanasundara JP, Shahidi F (1994) Functional properties and amino acid composition of solvent extracted flaxseeds meals. Food Chem 49:45–51

    CAS  Google Scholar 

  • Wanasundara PKJPD, Shahidi F (1997) Removal of flaxseed mucilage by chemical and enzymatic treatments. Food Chem 59:47–55

    CAS  Google Scholar 

  • Wang C, Makela T, Hase T, Adlercreutz H, Kurzer MS (1994) Lignans and flavonoids inhibit aromatase enzyme in human preadipocytes. J Steroid Biochem Mol Biol 50:205–212

    CAS  Google Scholar 

  • Wang LQ, Meselhy MR, Li Y, Qin GW, Hattori M (2000) Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem Pharm Bull 48:1606–1610

    CAS  Google Scholar 

  • Westcott ND, Muir AD (2003) Chemical studies on the constituents of Linum spp. In: Muir AD, Westcott ND (eds) Flax: the genus Linum. Taylor & Francis, London, pp 55–73

    Google Scholar 

  • WHO (2003) Diet, nutrition and the prevention of chronic diseases. WHO Technical Report, Series 916

  • Wiesenborn D, Kangas N, Tostenson K, Hall C III, Chang K (2005) Sensory and oxidative quality of screw-pressed flaxseed oil. J Am Oil Chem Soc 82:887–892

    CAS  Google Scholar 

  • Wu W, Huff HE, Hsieh F (2007) Processing and properties of extruded flaxseed-corn puff. J Food Process Preserv 31:211–226

    CAS  Google Scholar 

  • Wu M, Li D, Wang LJ, Ozkan N, Mao ZH (2010) Rheological properties of extruded dispersions of flaxseed-maize blend. J Food Eng 98:480–491

    CAS  Google Scholar 

  • Xu Y, Hall C III, Wolf-Hall C (2008a) Antifungal activity stability of flaxseed protein extracts using response surface methodology. J Food Sci 73:M9–M14

    CAS  Google Scholar 

  • Xu Y, Hall C III, Wolf-Hall C (2008b) Antifungal activity stability of flaxseed protein extracts using response surface methodology. Food Microbiol Saf 73:M9–M14

    CAS  Google Scholar 

  • Yamashita T, Sano T, Hashimoto T, Kanazawa K (2007) Development of a method to remove cyanogen glycosides from flaxseed meal. Int J Food Sci Technol 42:70–75

    CAS  Google Scholar 

  • Young LG (1982) Effects of processing on nutritive value of feeds: oilseeds and oilseed meals. In: Miloslav Jr R (ed) Handbook of nutritive value of processed food. CRC series in Nutrition, vol. 2, animal feedstuffs. CRC Press, Boca Raton pp 213–221

  • Zhang ZS, Wang Li J, Li D, Jiao SS, Chen DX, Mao ZH (2008) Ultrasound-assisted extraction of oil from flaxseed. Sep Purif Technol 62:192–198

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajla, P., Sharma, A. & Sood, D.R. Flaxseed—a potential functional food source. J Food Sci Technol 52, 1857–1871 (2015). https://doi.org/10.1007/s13197-014-1293-y

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1293-y

Keywords

Navigation