Skip to main content
Log in

Phenotypic and molecular differences among rhizobia that nodulate Phaseolus lunatus in the Supe valley in Peru

  • Short Communication
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A collection of 16 bacterial strains isolated from root nodules of Lima bean (Phaseolus lunatus L.) in the Supe valley of Peru were characterised using phenotypic and molecular methods. The isolates were clustered into fast-growing, alkalinising and extra-alkalinising slow-growing isolates with marked morphological differences, according to the rate of growth and alkalinisation of yeast extract mannitol (YEM) medium. Fast-growing isolates were salt tolerant and sensitive to 40 °C, while alkalinising slow-growing isolates behaved oppositely. Extra-alkalinising slow-growing isolates were sensitive to 8 °C and 40 °C and tolerated 1 % NaCl. Fast-growing isolates also showed higher indole-3-acetic acid (IAA) production and tri-calcium phosphate solubilisation than the alkalinising slow-growing isolates. Half of the isolates were able to nodulate Phaseolus vulgaris and Vigna unguiculata. Individually, BOX-PCR, ERIC-PCR, and REP-PCR fingerprints patterns resulted in ten profiles from 16 isolates and they were clustered into three profile groups that correspond to the clusters obtained by YEM medium alkalinisation. Analysis of 16S rRNA gene sequences revealed that fast-growing isolates showed 99.7 % sequence identity with Rhizobium mesosinicum CCBAU 25010T and Rhizobium alamii GBV016T. Alkalinising slow-growing isolates were related to both Bradyrhizobium yuanmingense CCBAU10071T and Bradyrhizobium liaoningense 2281T, with 99.8 % sequence identity, and extra-alkalinising slow-growing isolates had 100 % sequence identity to both Bradyrhizobium paxllaeri LMTR 21T and Bradyrhizobium icense LMTR 13T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J, Ruiz-Argüeso T, Martínez-Romero E, Ormeño-Orrillo E (2014) Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.). Int J Syst Evol Microbiol 64:2072–2078

    Article  PubMed  Google Scholar 

  • Fofana B, Vekemans X, du Jardin P, Baudoin JP (1997) Genetic diversity in Lima bean (Phaseolus lunatus L.) as revealed by RAPD markers. Euphytica 95:157–165

    Article  CAS  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Matos G, Ormeño E, Zúñiga D (1998) Diversidad de los rizobios que nodulan el cultivo de pallar (Phaseolus lunatus L.) en la costa central del Perú. Ecología 1:42–46

    Google Scholar 

  • Nautiyal SC (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Ormeño E, Torres R, Mayo J, Rivas R, Peix A, Velásquez E, Zúñiga D (2007) Phaseolus lunatus is nodulated by a phosphate solubilizing strain of Sinorhizobium meliloti in a Peruvian soil. In: Velázquez E, Rodríguez-Barrueco C (eds) First International Meeting on Microbial Phosphate Solubilization. Dev Plant Soil Sci 102:143–147

  • Ormeño-Orrillo E, Vinuesa P, Zúñiga-Dávila D, Martínez-Romero E (2006) Molecular diversity of native bradyrhizobia isolated from Lima bean (Phaseolus lunatus L.) in Peru. Syst Appl Microbiol 29:253–262

    Article  PubMed  Google Scholar 

  • Rodríguez-Navarro DN, Camacho M, Leidi EO, Rivas R, Velázquez E (2004) Phenotypic and genotypic characterization of rhizobia from diverse geographical origin that nodulate Pachyrhizus species. Syst Appl Microbiol 27:737–745

    Article  PubMed  Google Scholar 

  • Rohlf FJ (1998) NTSYSpc: Numerical taxonomy and multivariate analysis system version 2.02. Exeter Software, Setauket

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Vincent JM (1970) A Manual for the Practical Study of Root-Nodule Bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao Z, Kan F, Wang E, Wei G (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, Wang ET, Tian CF, Wang FQ, Han LL, Chen WF, Chen WX (2008) Bradyrhizobium elkanii, Bradyrhizobium yuanmingense and Bradyrhizobium japonicum are the main rhizobia associated with Vigna unguiculata and Vigna radiata in the subtropical region of China. FEMS Microbiol Lett 285:146–154

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Zúñiga-Dávila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsubara, M., Zúñiga-Dávila, D. Phenotypic and molecular differences among rhizobia that nodulate Phaseolus lunatus in the Supe valley in Peru. Ann Microbiol 65, 1803–1808 (2015). https://doi.org/10.1007/s13213-015-1054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1054-9

Keywords

Navigation