Skip to main content
Log in

Major foodborne pathogens in fish and fish products: a review

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Fish plays an important role in the human diet, and there is an observed increase in the consumption of fish per capita in Europe. However, intensive growth of industry and agriculture may cause contamination of natural and human-made aquatic environments, and may affect not only the health of fish, but also raise safety concerns with regard to fish used for human consumption. It is well known that fish and fish products are often associated with human diseases. Thus, it is necessary to study the prevalence of pathogens in fish to ensure the safety of fish products and environments. Microbial assessment of fish also gives additional information about the hygienic status of environments, including lakes, rivers, ponds, and fish farms. Detection of pathogenic microorganisms or changes in natural microflora in the water environment could be an important indicator of possible contamination. The aim of this review was to describe and discuss the five most relevant bacterial genera and species linked to aquatic environments—Vibrio spp., Listeria monocytogenes, Yersinia spp., pathogenic Salmonella serovars, and Clostridium botulinum—causing human foodborne diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adgamov RR, Timchenko NF, Zaitseva EA, Pushkareva VI, Kolbasov DV, Egorova IY, Pukhovskaya NM, Musatov YS, Ivanov LI, Ermolaeva SA (2013) Ecological and genetic mechanisms of development of epidemiologically significant strains of sapronosis causative agents. Biol Bull Rev 3:125–138

    Article  Google Scholar 

  • Agbaje M, Begum RH, Oyekunle MA, Ojo OE, Adembi OT (2011) Evolution of Salmonella nomenclature: acritical note. Folia Microbiol 56:497–503

    Article  CAS  Google Scholar 

  • Akhila S, Shanmuga Priya S, Senthil Murugn T, Tha T (2013) Molecular diversity analysis of Yersinia enterocolitica isolated from marine marketed fish. Int J Curr Microbiol App Sci 2:204–214

    Google Scholar 

  • Albufera U, Bhugaloo-Vial P, Issack MI, Jaufeerally-Fakim Y (2009) Molecular characterization of Salmonella isolated by REP-PCR and RAPD analysis. Infect Genet Evol 9:322–327

    Article  PubMed  CAS  Google Scholar 

  • Alexopoulos A, Plessas S, Voidarou C, Noussias H, Stavropoulou E, Mantzourani I, Tzora A, Skoufos I, Bezirtzoglou E (2011) Microbial ecology of fish species growing in greek sea farms and their watery environment. Anaerobe 17:264–266

    Article  PubMed  CAS  Google Scholar 

  • Allen DA, Austin B, Colwell RR (1983) Numerical taxonomy of bacterial isolates associated with a freshwater fishery. J Gen Microbiol 129:2043–2062

    Google Scholar 

  • Amagliani G, Brandi G, Schiavano GF (2012) Incidence and role of Salmonella in seafood safety. Food Res Int 45:780–788

    Article  Google Scholar 

  • Apun K, Yusof AM, Jugang K (1999) Distribution of bacteria in tropical freshwater fish and ponds. Int J Environ Health Res 9:285–292

    Article  Google Scholar 

  • Bakr WMK, Hazzah WA, Abaza AF (2011) Detection of Salmonella and Vibrio species in some seafood in Alexandria. J Am Sci 7:663–668

    Google Scholar 

  • Balasubramanian S, Rajan MR, Raj SP (1992) Microbiology of fish grown in a sewage-fed pond. Bioresour Technol 40:63–66

    Article  Google Scholar 

  • Barash JR, Arnon SS (2014) A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis 209:183–191

    Article  PubMed  CAS  Google Scholar 

  • Basti AA, Misaghi A, Salehi TZ, Kamkar A (2006) Bacterial pathogens in fresh, smoked and salted Iranian fish. Food Control 17:183–188

    Article  Google Scholar 

  • Bott TL, Deffner JS, McCoy E, Foster EM (1966) Clostridium botulinum in fish from the Great Lakes. J Bacteriol 91:919–924

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bottone EJ, Bercovier H, Mollaret HH (2005) Genus XLI. Yersinia. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology. The proteobacteria. Part B. The gammaproteobacteria, 2nd edn. Springer Press, New York, pp 838–848

    Google Scholar 

  • Bresolin G, Neuhaus K, Scherer S, Fuchs TM (2006) Transcriptional analysis of long-term adaptation of Yersinia enterocolitica to low-temperature growth. J Bacteriol 188:2945–2958

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Broza YY, Danin-Poleg Y, Lerner L, Valinsky L, Broza M, Kashi Y (2009) Epidemiologic study of Vibrio vulnificus infections by using variable number tandem repeats. Emerg Infect Dis 15:1282–1285

    Article  PubMed Central  PubMed  Google Scholar 

  • Brubaker RR (1991) Factors promoting acute and chronic diseases caused by yersiniae. Clin Microbiol Rev 4:309–324

  • Budiati T, Rusul G, Wan-Abdullah WN, Arip YM, Ahmad R, Thong KL (2013) Prevalence, antibiotic resistance, and plasmid profiling of salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture 372:127–132

    Article  CAS  Google Scholar 

  • Budzińska K, Wroński G, Szejniuk B (2012) Survival time of bacteria Listeria monocytogenes in water environment and sewage. Pol J Environ Stud 1:31–37

    Google Scholar 

  • Callol A, Pajuelo D, Ebbesson L, Teles M, MacKenzie S, Amaro C (2015) Early steps in the European eel (Anguilla anguilla)-Vibrio vulnificus interaction in the gills: role of the RtxA13 toxin. Fish Shellfish Immunol 43:502–509

    Article  PubMed  CAS  Google Scholar 

  • Campbell AC, Buswell JA (1983) The intestinal microflora of farmed dover sole (Solea solea) at different stages of fish development. J Appl Bacteriol 55:215–223

    Article  Google Scholar 

  • Carter AT, Peck MW (2014) Genomes, neurotoxins, and biology of Clostridium botulinum group I and group II. Res Microbiol. doi:10.1016/j.resmic.2014.10.010

    PubMed  Google Scholar 

  • Chao W, Ding R, Chen R (1987) Survival of pathogenic bacteria in environmental microcosms. Chin J Microbiol Immunol 20:339–348

    CAS  Google Scholar 

  • Chen BY, Pyla R, Kim TJ, Silva JL, Jung YS (2010) Prevalence and contamination patterns of Listeria monocytogenes in catfish processing environment and fresh fillets. Food Microbiol 27:645–652

    Article  PubMed  Google Scholar 

  • Cheyne BM, Van Dyke MI, Anderson WB, Huck PM (2009) An evaluation of methods for the isolation of Yersinia enterocolitica from surface waters in the Grand River watershed. J Water Health 7:392–403

    Article  PubMed  Google Scholar 

  • Christensen PJ (1977) The history, biology, and taxonomy of the cytophaga group. Can J Microbiol 23:1599–1653

    Article  PubMed  CAS  Google Scholar 

  • Corcoran D, Clancy D, O’Mahony M, Grant K, Hyland E, Shanaghy N, Whyte P, McLauchlin J, Moloney A, Fanning S (2006) Comparison of Listeria monocytogenes strain types in Irish smoked salmon and other foods. Int J Hyg Environ Health 209:527–34

    Article  PubMed  CAS  Google Scholar 

  • Costeron JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  Google Scholar 

  • David OM, Wandili S, Kakai R, Waindi EN (2009) Isolation of Salmonella and Shigella from fish harvested from the Winam Gulf of lake Victoria, Kenya. J Infect Dev Countries 3:99–104

    Google Scholar 

  • Davies AR, Capell C, Jehanno D, Nychas GJE, Kirby RM (2001) Incidence of foodborne pathogens on European fish. Food Control 12:67–71

    Article  Google Scholar 

  • Den Bakker HC, Warchocki S, Wright EM, Allred AF, Ahlstrom C, Manuel CS, Stasiewicz MJ, Burrell A, Roof S, Strawn L, Fortes ED, Nightingale KK, Kephart D, Wiedmann M (2014) Five new species of Listeria (L. Floridensis sp. nov, L. Aquatica sp. nov., L. Cornellensis sp. nov. L. Riparia sp. nov., and L. Grandensis sp. nov.) from agricultural and natural environments in the united states. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.052720-0

    Google Scholar 

  • Dhanashree B, Otta SK, Karunasagar I, Goebel W, Karunasagar I (2003) Incidence of Listeria spp. in clinical and food samples in Mangalore, India. Food Microbiol 20:447–453

    Article  Google Scholar 

  • Diler O, Diler A (1998) Quantitative and qualitative changes of the gastrointestinal microflora of pike-perch (Stizostedion lucioperca L. 1758) in Egirdir Lake. Turk J Vet Anim Sci 22:325–328

    Google Scholar 

  • Diler O, Altun S, Calikusu F, Diler A (2000) A study on qualitative and quantitative bacterial flora of the rainbow trout (Oncorhynchus mykiss) living in different fish farms. Turk J Vet Anim Sci 24:251–259

    Google Scholar 

  • Drake SL, DePaola A, Jaykus LA (2007) An overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr Rev Food Sci F 6:120–144

    Article  CAS  Google Scholar 

  • Duffes F (1999) Improving the control of Listeria monocytogenes in cold smoked salmon. Trends Food Sci Technol 10:211–216

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2015) The European union summary report on trends and sources of zoonoses, zoonotic agents, and food-borne outbreaks in 2013. EFSA J 13(1):1–312

    Google Scholar 

  • Embarek PKP (1994) Presence, detection and growth of Listeria monocytogenes in seafoods: a review. Int J Food Microbiol 23:17–34

    Article  PubMed  Google Scholar 

  • Ertas HB, Seker E (2005) Isolation of Listeria monocytogenes from fish intestines and RAPD analysis. Turk J Vet Anim Sci 29:1007–1011

    CAS  Google Scholar 

  • EUMOFA (2014) European market observatory for fisheries and aquaculture products. The EU fish market. 2014 edn, pp 1–61

  • Evelyn TPT, McDermott LA (1961) Bacteriological studies of freshwater fish. Isolation of aerobic bacteria from several species of Ontario fish. Can J Microbiol 7:357–382

    Article  Google Scholar 

  • Ewing WH, Ross AJ, Brenner DJ, Fanning GR (1978) Yersinia ruckeri sp. nov., the redmouth (RM) bacterium. Int J Syst Bacteriol 28:37–44

    Article  CAS  Google Scholar 

  • Fach P, Perelle S, Dilasser F, Grout J, Dargaignaratz C, Botella L, Gourreau JM, Carlin F, Popoff MR, Broussolle V (2002) Detection by PCR–enzyme-linked immunosorbent assay of Clostridium botulinum in fish and environmental samples from a coastal area in Northern France. Appl Environ Microbiol 68:5870–5876

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Falcão JP, Brocchi M, Proenca-Modena JL, Acrani GO, Correa EF, Falcão DP (2004) Virulence characteristics and epidemiology of Yersinia enterocolitica and Yersiniae other than Y. pseudotuberculosis and Y. pestis isolated from water and sewage. J Appl Microbiol 96:1230–1236

    Article  PubMed  Google Scholar 

  • FAO (2010) FAO expert workshop on the application of biosecurity measures to control Salmonella contamination in sustainable aquaculture. FAO Fish Aquac Rep 937:1–37

    Google Scholar 

  • Fonnesbech Vogel B, Huss HH, Ojeniyi B, Ahrens P, Gram L (2001) Elucidation of Listeria monocytogenes contamination routes in cold-smoked salmon processing plants detected by DNA-based typing methods. Appl Environ Microbiol 76:2586–2595

    Article  Google Scholar 

  • Fredriksson-Ahomaa M, Stolle A, Korkeala H (2006) Molecular epidemiology of Yersinia enterocolitica infections. FEMS Immunol Med Microbiol 47:315–329

    Article  PubMed  CAS  Google Scholar 

  • Fukushima H (1992) Direct isolation of Yersinia pseudotuberculosis from fresh water in Japan. Appl Environ Microbiol 58:2688–2690

    PubMed Central  PubMed  CAS  Google Scholar 

  • Furones MD, Rodgers CJ, Munn CB (1993) Yersinia ruckeri, the causal agent of enteric redmouth disease (ERM) in fish. Annu Rev Fish Dis 3:105–125

    Article  Google Scholar 

  • Gauthier DT (2015) Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet J 203:27–35

    Article  PubMed  Google Scholar 

  • Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 92:98–110

    Article  Google Scholar 

  • Givens CE, Bowers JC, DePaola A, Hollibaugh JT, Jones JL (2014) Occurrence and distribution of Vibrio vulnificus and Vibrio parahaemolyticus – potential role for fish, oyster, sediment and water. Lett Appl Microbiol 58:503–510

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez CJ, Santos JA, Garcia-Lopez ML, Otero A (2000) Psychrobacters and related bacteria in freshwater fish. J Food Prot 63:315–321

    PubMed  CAS  Google Scholar 

  • Gonzalez CJ, Santos JA, Garcia-Lopez ML, Gonzalez N, Otero A (2001) Mesophilic aeromonads in wild and aquacultured freshwater fish. J Food Prot 64:687–691

    PubMed  CAS  Google Scholar 

  • González-Rodríguez MN, Sanz JJ, Santos JA, Otero A, García-López ML (2002) Foodborne pathogenic bacteria in prepackaged fresh retail portions of farmed rainbow trout and salmon stored at 3°C. Int J Food Microbiol 76:135–141

    Article  PubMed  Google Scholar 

  • Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI, Roof SE, Orsi RH, Fortes ED, Milillo SR, den Bakker HC, Wiedmann M, Swaminathan B, Sauders BD (2009) Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol 60:1280–1288

    Article  PubMed  CAS  Google Scholar 

  • Guzman MC, Bistoni MA, Tamagninii LM, Gonzales RD (2004) Recovery of Escherichia coli in fresh water fish, jenynsia multidentata and Bryconamericus iheringi. Water Res 38:2368–2374

  • Hansen CH, Vogel BF, Gram L (2006) Prevalence and survival of Listeria monocytogenes in Danish aquatic and fish processing environments. J Food Prot 69:2113–2122

    PubMed  Google Scholar 

  • Hatha AAM, Lakshmanaperumalsamy P (1997) Prevalence of Salmonella in fish and crustaceans from markets in Coimbatore, South India. Food Microbiol 14:111–116

    Article  Google Scholar 

  • Heinitz ML, Ruble RD, Wagner DE, Tatini SR (2000) Incidence of Salmonella in fish and seafood. J Food Prot 63:579–592

    PubMed  CAS  Google Scholar 

  • Hielm S, Björkroth J, Hyytiä E, Korkeala H (1998a) Prevalence of Clostridium botulinum in finnish trout farms: pulsed-field gel electrophoresis typing reveals extensive genetic diversity among type E isolates. Appl Environ Microbiol 64:4161–4167

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hielm S, Hyytiä E, Andersin B, Korkeala H (1998b) A high prevalence of Clostridium botulinum type E in finnish freshwater and baltic Sea sediment samples. J Appl Microbiol 84:133–137

    Article  PubMed  CAS  Google Scholar 

  • Horsley RW (1973) The bacterial flora of the Atlantic salmon (Salmo salar L.) in relation to its environment. J Appl Bacteriol 36:377–386

    Article  PubMed  CAS  Google Scholar 

  • Hudecová K, Buchtová H, Steinhauserová I (2010) The effects of modified atmosphere packaging on the microbiological properties of fresh common carp (Cyprinus carpio). Acta Vet Brno 79:93–100

    Article  Google Scholar 

  • Huehn S, Eichhorn C, Urmersbach S, Breidenbach J, Bechlars S, Bier N, Alter T, Bartelt E, Frank C, Oberheitmann B, Gunzer F, Brennholt N, Böer S, Appel B, Dieckmann R, Strauch E (2014) Pathogenic vibrios in environmental, seafood and clinical sources in Germany. Int J Med Microbiol 304:843–850

    Article  PubMed  Google Scholar 

  • Huss HH (1980) Distribution of Clostridium botulinum. Appl Environ Microbiol 39:764–769

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huss HH, Pedersen A (1979) Clostridium botulinum in fish. Nord Vet Med 31:214–221

    PubMed  CAS  Google Scholar 

  • Hyytiä E, Hielm S, Korkeala H (1998) Prevalence of Clostridium botulinum type E in finnish fish and fishery products. Epidemiol Infect 120:245–250

    Article  PubMed Central  PubMed  Google Scholar 

  • Ioannidis A, Kyratsa A, Ioannidou V, Bersimis S, Chatzipanagiotou S (2014) Detection of biofilm production of Yersinia enterocolitica strains isolated from infected children and comparative antimicrobial susceptibility of biofilm versus planktonic forms. Mol Diagn Ther 18:309–314

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto M, Ayers T, Mahon BE, Swerdlow DL (2010) Epidemiology of seafood-associated infections in the United States. Clin Microbiol Rev 23:399–411

    Article  PubMed Central  PubMed  Google Scholar 

  • Jalava K, Hakkinen M, Valkonen M, Nakari UM, Palo T, Hallanvuo S, Ollgren J, Siitonen A, Nuorti JP (2006) An outbreak of gastrointestinal illness and erythema nodosum fromgrated carrots contaminated from birds in Norway. J Wildl Dis 18:247–248

    Google Scholar 

  • Jami M, Ghanbari M, Zunabovic M, Domig KJ, Kneifel W (2014) Listeria monocytogenes in aquatic food products—a review. Compr Rev Food Sci F 13:798–813

    Article  Google Scholar 

  • Janssens JCA, Steenackers H, Robijns S, Gellens E, Levin J, Zhao H, Hermans K, Keersmaecker D (2008) Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 74:6639–6648

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Johannsen A (1962) Clostridium botulinum in Sweden and the adjacent waters. J Appl Bacteriol 26:43–47

    Article  Google Scholar 

  • Johansson T, Rantala L, Palmu L, Honkanen-Buzalski T (1999) Occurrenceand typing of Listeria monocytogenes strains in retail vacuum-packed fishproducts and in a production plant. Int J Food Microbiol 47:111–9

    Article  PubMed  CAS  Google Scholar 

  • Kakatkar AS, Gautam RK, Nagar V, Karani M, Bandekar JR (2010) Incidence of foodborne pathogens in freshwater fish from domestic markets of Mumbai. Fish Technol 47:95–200

    Google Scholar 

  • Kamei Y, Sakata T, Kakimoto D (1985) Microflora in the alimentary tract of the tilapia: characteristics and distribution of anaerobic bacteria. J Gen Appl Microbiol 31:115–124

    Article  CAS  Google Scholar 

  • Karapinar M, Gonul SA (1991) Survival of Yersinia enterocolitica and Escherichia coli in spring water. Int J Food Microbiol 13:315–319

    Article  PubMed  CAS  Google Scholar 

  • Kishore P, Lalitha KV, Joseph TC, Thampuran N (2012) Biotyping and antibiotic resistance profile of Yersinia enterocolitica associated with seafoods from south-west coast of India. Fish Technol 49:64–71

    Google Scholar 

  • Koonse B (2005) Good aquaculture practices for farmers – an update. FAO Fish Proc 1:76–77

    Google Scholar 

  • Kumar R, Surendran PK, Thampuran N (2009) Distribution and genotypic characterization of Salmonella serovars isolated from tropical seafood in cochin, India. J Appl Microbiol 106:515–524

    Article  PubMed  CAS  Google Scholar 

  • Lang Halter E, Neuhaus K, Scherer S (2013) Listeria weihenstephanensis sp. nov., isolated from the water plant lemna trisulca taken from a freshwater pond. Int J Syst Evol Microbiol 63:641–647

    Article  PubMed  CAS  Google Scholar 

  • Lapidot A, Romling U, Yaron S (2006) Biofilm formation and the survival of Salmonella typhimurium on parsley. Int J Med Microbiol 109:229–233

    Article  CAS  Google Scholar 

  • Leclair D, Farber JM, Doidge B, Blanchfield B, Suppa S, Pagotto F, Austin JW (2012) Distribution of Clostridium botulinum type E strains in Nunavik, Northern Quebec, Canada. Appl Environ Microbiol 79:646–654

    Article  PubMed  CAS  Google Scholar 

  • Li TH, Chiu CH, Chen WC, Chen CM, Hsu YM, Chiou SS, Chiou CS, Chang CC (2009) Consumption of groundwater as an independent risk factor of Salmonella Choleraesuis infection: a case control study in Taiwan. J Environ Health 72:28–31

    PubMed  Google Scholar 

  • Lianou A, Sofos JN (2007) A review of the incidence and transmission of Listeria monocytogenes in ready-to-eat products in retail and food service environments. J Food Prot 70:2172–98

    PubMed  Google Scholar 

  • Liao CH, Shollenberger LM (2003) Survivability and long-term preservation of bacteria in water and in phosphate-buffered saline. Lett Appl Microbiol 37:45–50

    Article  PubMed  Google Scholar 

  • Lindström M, Vuorela M, Hinderink K, Korkeala H, Dahlsten E, Raahenmaa M, Kuusi M (2006) Botulism associated with vacuum-packed smoked whitefish in Finland, June-July 2006. Euro Surveill 11(29):3004

    Google Scholar 

  • Liu D (2006) Identification, subtyping, and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol 55:645–659

    Article  PubMed  Google Scholar 

  • Lunestad BT, Nesse L, Lassen J, Svihus B, Nesbakken T, Fossum K, Rosnes JT, Kruse H, Yazdankhak S (2007) Salmonella in fish feed; occurrence and implications for fish and human health in Norway. Aquaculture 265:1–8

    Article  Google Scholar 

  • Mah FC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  • Mahmud ZH, Wright AC, Mandal SC, Dai J, Jones MK, Hasan M, Rashid MH, Islam MS, Johnson JA, Gulig PA, Morris JG Jr, Ali A (2010) Genetic characterization of Vibrio vulnificus strains from tilapia aquaculture in Bangladesh. Appl Environ Microbiol 76:4890–4895

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Markkula A, Autio T, Lundén J, Korkeala H (2005) Raw and processed fish show identical Listeria monocytogenes genotypes with pulsed-field gel electrophoresis. J Food Prot 68:1228–1231

    PubMed  Google Scholar 

  • Martinez-Urtaza J, Saco M, de Novoa J, Perez-Pioneiro P, Peiteado J, Lozano-Leon A, Garcia-Martin O (2004) Influence of environmental factors and human activity on the presence of Salmonella serovars in a marine environment. Appl Environ Microbiol 70:2089–2097

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Massa S, Cesaroni D, Poda E, Tronatelli LD (1988) Isolation of Yersinia enterocolitica and related species from riverwater. Zentralbl Mikrobiol 14:3575–81

    Google Scholar 

  • Merivirta OL, Lindström M, Björkroth KJ, Korkeala H (2006) The prevalence of Clostridium botulinum in european river lamprey (Lampetra fluviatilis) in Finland. Int J Food Microbiol 109:234–237

    Article  PubMed  CAS  Google Scholar 

  • Miettinen H, Wirtanen G (2005) Prevalence and location of Listeria monocytogenes in farmed rainbow trout. Int J Food Microbiol 104:135–143

    Article  PubMed  Google Scholar 

  • Modarressi S, Thong KL (2010) Isolation and molecular subtyping of Salmonella enterica from chicken, beef, and street foods in malaysia. Sci Res Essays 5:2713–2720

    Google Scholar 

  • Momtaz H, Yadollahi S (2013) Molecular characterization of Listeria monocytogenes isolated from fresh seafood samples in Iran. Diagn Pathol 8:149

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moore BC, Martinez E, Gay JM, Rice DH (2003) Survival of Salmonella enterica in freshwater and sediments, and transmission by the aquatic midge Chironomus tentans (chironomidae: diptera). Appl Environ Microbiol 69:4556–4560

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Møretrø T, Vestby LK, Nesse LL, Hannevik S, Kotlarz K, Langsrud S (2009) Evaluation of efficiency of disinfectants against Salmonella from the feed industry. J Appl Microbiol 106:1005–1012

    Article  PubMed  Google Scholar 

  • Murros-Kontiainen A, Fredriksson-Ahomaa M, Korkeala H, Johansson P, Rahkila R, Björkroth J (2011a) Yersinia nurmii sp. nov. Int J Syst Evol Microbiol 61:2368–2372

    Article  PubMed  Google Scholar 

  • Murros-Kontiainen A, Johansson P, Niskanen T, Fredriksson-Ahomaa M, Korkeala H, Björkroth J (2011b) Yersinia pekkanenii sp. nov. Int J Syst Evol Microbiol 61:2363–2367

    Article  PubMed  CAS  Google Scholar 

  • Nakaguchi Y (2013) Contamination by Vibrio parahaemolyticus and its virulent strains in seafood marketed in Thailand, Vietnam, Malaysia, and Indonesia. Trop Med Health 41:95–102

    Article  PubMed Central  PubMed  Google Scholar 

  • Nedoluha PC, Westhoff D (1997) Microbiological analysis of striped bass (Morone saxatilis) grown in a recirculating system. J Food Prot 60:948–953

    Google Scholar 

  • Nol P, Rocke TE, Gross K, Yuill TM (2004) Prevalence of neurotoxic Clostridium botulinum type C in the gastrointestinal tracts of tilapia (Oreochromis mossambicus) in the salton Sea. J Wildl Dis 40:414–419

    Article  PubMed  CAS  Google Scholar 

  • Noorlis A, Ghazali FM, Cheah YK, Tuan Zainazor TC, Ponniah J, Tunung R, Tang JYH, Nishibuchi M, Nakaguchi Y, Son R (2011) Prevalence and quantification of Vibrio species and Vibrio parahaemolyticus in freshwater fish at hypermarket level. Int Food Res J 18:689–695

    Google Scholar 

  • Norton DM, Mccamey MA, Gall K, Scarlet JM, Boor KJ, Wiedman M (2001) Molecular studies on the ecology of Listeria monocytogenes in the smoking fish processing industry. Appl Environ Microbiol 67:198–205

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Otomo Y, Abe K, Odagiri K, Shiroto A, Takatori K, Hara-Kudo Y (2007) Detection of Salmonella in spent hens and eggs associated with foodborne infections. Avian Dis 51:578–583

    Article  PubMed  CAS  Google Scholar 

  • Palonen E, Lindström M, Korkeala H (2010) Adaptation of enterophatogenic Yersinia to low growth temperature. Crit Rev Microbiol 36:54–67

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos T, Abrahim A, Sergelidis D, Kirkoudis I, Bitchava K (2010) Prevalence of Listeria spp. in freshwater fish (Oncorhynchus mykiss and Carassius gibelio) and the environment of fish markets in Northern Greece. J Hell Vet Med Soc 61:15–22

    Google Scholar 

  • Parker WF, Mee BJ (1982) Survival of Salmonella Adelaide and fecal coliforms in coarse sands of the swan coastal plain, Western Australia. Appl Environ Microbiol 43:981–986

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pillay TVR (1990) Fish and public health and disease. In: Pillay TVR (ed) Aquaculture, principles and practices. Fishing News Book. Farnham, UK, pp 174–215

    Google Scholar 

  • Ponce E, Khan AA, Cheng C, Summage-West C, Cerniglia CE (2008) Prevalence and characterization of Salmonella enterica serovar Weltevreden from imported seafood. Food Microbiol 25:29–35

    Article  PubMed  CAS  Google Scholar 

  • Pullela S, Fernandes CF, Flick GJ, Libey GS, Smith SA, Coale CW (1998) Indicative and pathogenic microbiological quality of aquacultured finfish grown in different production systems. J Food Prot 61:205–210

    PubMed  CAS  Google Scholar 

  • Rahimi E, Shakerian A, Falavarjani AG (2013) Prevalence and antimicrobial resistance of Salmonella isolated from fish, shrimp, lobster, and crab in Iran. Comp Clin Path 22:59–62

    Article  CAS  Google Scholar 

  • Razavilar V, Khani MR, Motallebi AA (2012) Bacteriological study of cultured silver carp (Hypophthalmichthys molitrix) in Gilan province, Iran. Iran J Fish Sci 12:689–701

    Google Scholar 

  • Rocke TE, Nol P, Pelizza C, Sturm K (2004) Type C botulism in pelicans and other fish-eating birds at the Salton Sea. Stud Avian Biol 27:137–140

    Google Scholar 

  • Salgado-Miranda C, Palomares E, Jurado M, Marin A, Vega F, Soriano-Vargas E (2010) Isolation and distribution of bacterial flora in farmed rainbowtrout from Mexico. J Aquat Anim Health 22:244–247

    Article  PubMed  Google Scholar 

  • Senderovich Y, Izhaki I, Halpern M (2010) Fish as reservoirs and vectors of Vibrio cholerae. PLoS One 5, e8607

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shabarinath S, Kumar HS, Khushiramani R, Karunasagar I, Karunasagar I (2007) Detection and characterization of Salmonella associated with tropical seafood. Int J Food Microbiol 114:227–233

    Article  PubMed  CAS  Google Scholar 

  • Shanmugapriya S, Senthilmurugant T, Thayumanavan T (2014) Genetic diversity among Yersinia enterocolitica isolated from chicken and fish in and around Coimbatore City, India. Iran J Publ Health 43:835–844

    Google Scholar 

  • Sinha I, Choudhary I, Virdi JS (2000) Isolation of Yersinia enterocolitica and Yersinia intermedia from wastewaters and their biochemical and serological characteristics. Curr Sci 79:510–513

    CAS  Google Scholar 

  • Smith LDS, Sugiyama H (1988) Botulism: the organism, its toxins, the disease, 2nd edn. Springfield, Illinois, p 139

    Google Scholar 

  • Sulakvelidze A (2000) Yersiniae other than Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis: the ignored species. Microbes Infect 2:497–513

    Article  PubMed  CAS  Google Scholar 

  • Tao Z, Larsen MA, Bullard SA, Wright AC, Arias CR (2012) Prevalence and population of Vibrio vulnificus on fishes from the nothern Gulf of Mexico. Appl Environ Microbiol 78:7611–7618

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thomas DJI, Strachan N, Goodburn K, Rotariu O, Hutchison ML (2012) A review of the published literature and current production and processing practices in smoked fish processing plants with emphasis on contamination by Listeria monocytogenes. Final FSA report http://foodbase.org.uk//admintools/reportdocuments/775-1-1323_FS425012.pdf. Accesed 25 Jan. 2015

  • Tocmo R, Krizman K, Khoo WJ, Phua LK, Kim M, Yuk HG (2014) Listeria monocytogenes in vacuum-packed smoked fish products: occurrence, routes of contamination, and potential intervention measures. Compr Rev Food Sci F13:172–189

    Article  CAS  Google Scholar 

  • Toranzo AE, Novoa B, Romalde JL, Nunez S, Devesa S, Marino E, Silva R, Martizen E, Figueras A, Barja JL (1993) Microflora associated with healthy and diseased turbot (Scophthalmus maximus) from 3 farms in Northwest Spain. Aquaculture 114:189–202

    Article  Google Scholar 

  • Trust TJ (1975) Bacteria associated with the gills of salmonid fishes in freshwater. J Appl Bacteriol 38:225–233

    Article  PubMed  CAS  Google Scholar 

  • Trust TJ, Sparrow RAH (1974) The bacterial flora in the alimentary tract of freshwater salmonid fish. Can J Microbiol 20:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Tsubokura M, Aleksić SA (1995) Simplified antigenic scheme for serotyping of Yersinia pseudotuberculosis: phenotypic characterization of reference strains and preparation of O and H factor sera. Contrib Microbiol Immunol 13:99–105

    PubMed  CAS  Google Scholar 

  • Vestby LK, Moretto T, Langsrud S, Heir E, Nesse LL (2009) Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. BMC Vet Res 5:20

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wagner M, McLauchlin J (2008) Biology. In: Liu D (ed) Handbook of Listeria monocytogenes. CRC Press, Washington, pp 3–27

    Chapter  Google Scholar 

  • Wang Y, Zhao A, Zhu R, Lan R, Jin D, Cui Z, Wang Y, Li Z, Wang Y, Xu J, Ye C (2012) Genetic diversity and molecular typing of Listeria monocytogenes in China. BMC Microbiol 12:119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wauters G, Kandolo K, Janssens M (1987) Revised biogrouping scheme of Yersinia enterocolitica. Contrib Microbiol Immunol 9:14–21

    PubMed  CAS  Google Scholar 

  • Weber JT, Hibbs RG Jr, Darwish A, Mishu B, Corwin AL, Rakha M, Hatheway CL, El-Sharkawy S, El-Rahim SA, Al-Hamd MF, Sarn EJ, Blake PA, Tauxe RV (1993) A massive outbreak of type E botulism associated with traditional salted fish in cairo. J Infect Dis 167:451–454

    Article  PubMed  CAS  Google Scholar 

  • White AP, Gibson DL, Kim W, Kay WW, Surette MG (2006) Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella. J Bacteriol 188:3219–3227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Youssef H, El-Timawy AK, Ahmed S (1992) Role of aerobic intestinal pathogens of fresh water fish in transmission of human diseases. Food Control 4:34–40

    Google Scholar 

  • Zmyslowska I, Lewandowska D, Nowakowski T, Kozlowski J (2001) Occurrence of bacteria in water and in vendace (Coregonus albula) during rearing in tanks. Pol J Environ Stud 10:51–56

    Google Scholar 

Download references

Acknowledgments

The work was prepared within the framework of the European Social Fund project No. 2013/0016/1DP/1.1.1.2.0/13/APIA/VIAA/055 “Iekšējo ūdeņu zivju resursu ķīmiskā un bioloģiskā piesārņojuma pētniecības grupas izveide”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Novoslavskij.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novoslavskij, A., Terentjeva, M., Eizenberga, I. et al. Major foodborne pathogens in fish and fish products: a review. Ann Microbiol 66, 1–15 (2016). https://doi.org/10.1007/s13213-015-1102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1102-5

Keywords

Navigation