Skip to main content
Log in

Mitogenomic phylogenetics and population genetics of several taxa of agouties (Dasyprocta sp., Dasyproctidae, Rodentia): molecular nonexistence of some claimed endemic taxa

  • Original Article
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

Some neotropical rodents are of special interest because they are an important source of animal protein for human indigenous populations throughout Latin America. This is the case of the genus Dasyprocta (agouties). However, we still do not know how many species, taxa, or lineages are within Dasyprocta. To address this issue, we analyzed the complete mitogenomes of 93 specimens in addition to three mitochondrial genes of 128 specimens of Dasyprocta belonging to six supposed species (D. fuliginosa, D. punctata, D. leporina, D. kalinowski, D. ruatanica, and D. azarae). The phylogenetic results indicated five different lineages within D. fuliginosa, with two being polyphyletic (one more related to D. leporina and another more related to D. punctata). D. kalinowski, a species endemic to Peru, was un-differentiable from one of these D. fuliginosa lineages. D. azarae was related with some of the lineages of D. fuliginosa. Within D. leporina, two significant lineages were found (in central Atlantic Brazil and on the Caribbean islands of Trinidad and Tobago). Within D. punctata, three lineages were detected, one in Central America (central and northern), including D. ruatanica, a supposed endemic species on Roatan Island, Honduras, another in central and southern Panama, and another in trans-Andean and Pacific Colombia and Ecuador. Some of the lineages of D. fuliginosa from the western Amazon yielded the most ancestral haplotypes (around 7 million years ago, MYA, Late Miocene). In contrast, haplotypes of a lineage of D. punctata and those of a lineage of D. leporina (Trinidad and Tobago) were the most derived (around 0.2–0.3 MYA, Pleistocene). Other population genetic results showed that all groups or lineages presented elevated levels of genetic diversity, with the exception D. leporina in Trinidad and Tobago. Their lower genetic diversity is probably related to founder effect during the colonization of the Caribbean island, due to a bottleneck. Some of these Dasyprocta taxa showed some population expansions during the Pleistocene, but all of the lineages experienced some population decrease during the last 10,000–20,000 years. Note that some lineages showed a small population increase in the last few centuries. The spatial genetic structure was highly developed throughout the Neotropics for Dasyprocta. According to this study, (1) coat color (routinely used in the systematics of this rodent) is not valuable from a phylogenetic and systematics perspective and (2) two supposedly endemic species (D. kalinowski and D. ruatanica) were not full species. These results are of vital importance for the biological conservation of the different taxa and lineages of this rodent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are available via the corresponding author.

References

  • Acosta G, Beramendi LE, González G, Rivera I, Eudave I, Hernández E, Sánchez S, Morales P, Cienfuegos E, Otero F (2018) Climate change and peopling of the Neotropics during the Pleistocene-Holocene transition. Bol Soc Geol Mexicana 70:1–19

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Transactions Automatic Control 19:716–723

  • Allen JA (1915a) Review of the South American Sciuridae. Bull Am Mus Nat Hist 34:147–309

    Google Scholar 

  • Allen JA (1915b) New South American mammals. Bull Am Mus Nat Hist 34:625–634

    Google Scholar 

  • Alston ER (1876) On the genus Dasyprocta; with description of a new species. Proc Zool Soc Lond 1876 part 2: 347–353

  • Arbogast BS, Slowinski JB (1998) Pleistocene speciation and the mitochondrial DNA clock. Science 282:1955a

    Article  Google Scholar 

  • Ascunce MS, Hasson E, Mudry MD (2003) COII: a useful tool for inferring phylogenetic relationships among New World monkeys (Primates, Platyrrhini). Zool Scripta 32:397–406

    Article  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeographic: the mitochondrial DNA bridge between population genetics and systematics. Ann Review Ecol Syst 18:489–522

    Article  Google Scholar 

  • Bai Y, Shakeley RM, Attardi G (2000) Tigh control of respiration by NADH dehydrogenase ND5 subunit gene expression in mouse mitochondria. Mol Cell Biol 20:805–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker RJ, Bradley RD (2006) Speciation in mammals and the genetic species concept. J Mammal 87:643–662

    Article  PubMed  Google Scholar 

  • Bandelt H, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific Phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bangs O (1898) Descriptions of some new mammals from Sierra Nevada de Santa Marta, Colombia. Proc Biol Soc Washington 12:161–165

    Google Scholar 

  • Bensasson D, Zhang D-X, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321

    Article  CAS  PubMed  Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard M, A, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10: 1–6

  • Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973

    Article  Google Scholar 

  • Brouns G, De Wulf A, Constales D (2003) Delaunay triangulation algorithms useful for multibeam echosounding. 129:79–84

  • Cabrera A (1917) Mamíferos del viaje al Pacífico. Trab Mus Cien Nat Madr Ser Zool 31:1–62

    Google Scholar 

  • Cabrera A (1961) Catálogo de los mamíferos de América del Sur. Rev Mus Argentino Cienc Nat. Ciencias Zoológicas 4:309–732

    Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Clapperton C (1993) Quaternary geology and geomorphology of South America. Elsevier, Amsterdam, The Nederlands

  • Clark PU (2002) Early deglaciation in the Tropical Andes. Science 298:7a

    Article  Google Scholar 

  • Da Silva MNF, Patton JL (1998) Molecular phylogeography and the evolution and conservation of Amazonian mammals. Mol Ecol 7:475–486

    Article  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLOS Biol 4:e88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Erixon P, Svennblad B, Britton T, Oxelman B (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol 52:665–673

    Article  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resources 10:564–567

    Article  Google Scholar 

  • Feijó A, Langguth A (2013) Mamíferos de médio e grande porte do nordeste do brasil: distribuição e taxonomia, com descrição de novas espécies. Rev Nordestina Biol 22:3–225

    Google Scholar 

  • Ferregutti AC, Tomas WM, Bergallo HG (2018) Density, habitat use, and daily activity patterns of the Red-rumped Agouti (Dasyprocta leporina) in the Atlantic Forest, Brazil. Studies Neotrop Fauna Environm 53:143–151

    Article  Google Scholar 

  • Figueira L, Zucaratto R, Pires AS, Cid B, Fernandez F (2014) Carrion consumption by Dasyprocta leporina (Rodentia: Dasyproctidae) and a review of meat use by agoutis. Brazilian J Biol 74:585–587

    Article  CAS  Google Scholar 

  • Fredga K (1966) Chromosome studies in five species of SouthAmerican rodents (Suborder Hystricomorpha). Mammal Chrom Newsletter 20:45–46

    Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality against population growth, hitchhiking and background selection. Genetics 147:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Li W (1993) Statistical Tests of Neutrality of Mutations. Genetics 133:693–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallina S, González-Romero A (2018) La conservación de mamíferos medianos en dos reservas ecológicas privadas de Veracruz, México. Rev Mexicana Biodiver 89:1245–1254

    Google Scholar 

  • George W, Weir BJ (1974) Hystrycomorph chromosomes. Symp Zool Society London 34: 79-108

  • Grant WS (2015) Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. J Hered 106:333–346

    Article  PubMed  Google Scholar 

  • Gray JE (1842) Descriptions on some new genera and fifty unrecorded species of Mammalia. Ann Mag Nat Hist Ser 1(10):255–267

    Article  Google Scholar 

  • Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy Z, Lenglet TG, Mayer F, Savolainen V (2013) Next- generation museomics disentangles one of the largest primate radiations. Syst Biol 62:539–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall ER (1981) The mammals of North America. Second Ed. John Wiley and Sons, New York

  • Heller R, Chikhi L, Siegismund HR (2013) The confounding effect of population structure on Bayesian Skyline Plot inferences of demographic history. PLoS ONE 8:62992

    Article  CAS  Google Scholar 

  • Hilborn R, Quinn TP, Schindler DE et al (2003) Biocomplexity and fisheries sustainability Proc Natl Acad Sci USA 100:6564–6568

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Article  Google Scholar 

  • Hobbs RJ, Mooney HA (1998) Broadening the extinction debate: population deletions and additions in California and Western Australia. Conserv Biol 12:271–283

    Article  Google Scholar 

  • Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92:532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu TC, Benirschke K (1968) An atlas of mammalian chromosomes. Springer-Verlag, New York

  • Huchon D, Douzery EJ (2001) From the old world to the new world: a molecular chronicle of the phylogeny and biogeography of Hystricognath rodents. Mol Phylogenet Evol 20:238–251

    Article  CAS  PubMed  Google Scholar 

  • Hudson R, Boss DD, Kaplan NL (1992) A statistical test for detecting population subdivision. Mol Biol Evol 9:138–151

    CAS  PubMed  Google Scholar 

  • Hungerford DA, Snyder RL (1964) Karyotypes of two more mammals. Amer Nat 98:899

    Article  Google Scholar 

  • Husson AM (1978) The mammals of Surinam. Zoölogische Monographieën van het Rijksmuseum van Natuurlijke Historie No 2, EJ Brill, Leiden, 569pp

  • Joly CA (2008) Biodiversity and climate change in the Neotropical region. Biota Neotrop 8:1–2

    Article  Google Scholar 

  • Jones KR, Lall KR, Garcia GW (2019) Omnivorous behaviour of the Agouti (Dasyprocta leporina): a neotropical rodent with the potential for domestication. Scientifica 2019 https://doi.org/10.1155/2019/3759783

  • Kartavtsev Y (2011) Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondr DNA 22:55–65

    Article  CAS  Google Scholar 

  • Kenup CF, Sepulvida R, Kreischer C, Fernandez FAS (2017) Walking on their own legs: unassisted population growth of the agouti Dasyprocta leporina, reintroduced to restore seed dispersal in an Atlantic Forest reserve. Oryx 52:571–578

    Article  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanave CG, Preparata C, Saccone C (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93

    Article  CAS  PubMed  Google Scholar 

  • Lanfear R, Calcott B. Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29: 1695–1701

  • Liais E (1872) Climats, geologie, faune et geographie botanique du Bresil. Garnier Freres, Paris, p 640

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lima JFS, Langguth A (1998) The karyotypes of three Brazilian species of the genus Dasyprocta (Rodentia: Dasyproctidae). Iheringia Série Zoologia 85:141–145

    Google Scholar 

  • Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 10th edn. Stockholm: Impensis Direct Laurentii Salvii

  • Luck GW, Daily GC, Ehrlich PR (2003) Population diversity and ecosystem services. Trends Ecol Evol 18:331–336

    Article  Google Scholar 

  • MacNeish RS (1979) The early man remains from Pikimachay Cave, Ayacucho Basin, Highland Peru. In: Humprey RL, Standford D (eds) Pre-Llano cultures of the Americas : Paradoxes and possibilities..Anthropological Society of Washington, Washington D.C, pp. 1–47

  • Manel S, Schwartz ML, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Can Res 27:209–220

    CAS  Google Scholar 

  • Maslin MA, Burns SJ (2000) Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years. Science 290:2285–2287

    Article  CAS  PubMed  Google Scholar 

  • Mason VC, Li G, Helgen KM, Murphy WJ (2011) Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens. Genome Res 21:1695–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Harvard University Press

  • Mayr E (1963) Animal species and evolution. Harvard University Press

  • Mendieta-Aguilar G, Pachecho LF, Roldán AI (2015) Dispersión de semillas de Mauritia flexuosa (Arecaceae) por frugívoros terrestres en Laguna Azul, Beni, Bolivia. Acta Amazon 45:45–56

    Article  Google Scholar 

  • Menéndez-Fernández M (2013) Prehistoria reciente de la penísnsula Ibérica. Universidad Nacional de Educación a Distancia, Madrid

  • Meritt DA (1983) Preliminary observations on reproduction in the Central American agouti, Dasyprocta punctata. Zoo Biol 2:127–131

    Article  Google Scholar 

  • Miller MP (2005) Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    Article  CAS  PubMed  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop, New Orleans, pp 1–8

  • Minin V, Abdo Z, Joyce P, Sullivan J (2003) Performance-based selection of likelihood models for phylogeny estimation. Syst Biol 52:674–683

    Article  PubMed  Google Scholar 

  • Mittelman P, Kreischer C, Pires AS, Fernandez FAS (2020) Agouti reintroduction recovers seed dispersal of a large-seeded triopical tree. Biotropica 54:766–774

    Article  Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261

    Article  Google Scholar 

  • Morral N, Bertrantpetit J, Estivill X et al (1994) The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nature Genet 7:169–175

    Article  CAS  PubMed  Google Scholar 

  • Nabholz B, Glemin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals —the longevity hypothesis. Mol Biol Evol 25(1):120−130

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press

  • Nowak RM (1999) Walker´s mammals of the world. 6th edition. 2 vols. The Jhon Hopkins University Press. Baltimore

  • Ojasti J (1972) Revisión preliminar de los picures o aguties de Venezuela (Rodentia, Dasyproctidae). Mem Soc Cien Nat La Salle 32:159–204

    Google Scholar 

  • Opazo JC (2005) A molecular timescale for caviomorph rodents (Mammalia, Hystricognathi). Mol Phylogenet Evol 37:932–937

    Article  CAS  PubMed  Google Scholar 

  • Patton JL, Emmons LH (2015) Family Dasiproctidae Bonaparte, 1838.In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America. Volume 2-Rodentia. The University of Chicago Press, Chicago, pp 733–772

  • Patton JL, Pardiñas UFJ, D’Elía G (2015) Mammals of South America, Volume 2 Rodents. The University of Chicago Press, Chicago

  • Pennington RT, Dick CW (2010) Diversification of the Amazonian flora and its relation to key geological and environmental events: a molecular perspective. In: Hoorn C, Wesselingh F (eds) Amazonia, Landscape and species evolution: a look into the past. Wiley-Blackwell, Oxford, pp 373–385

    Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  • Raaum RL, Sterner KN, Noviello CM, Stewart C-B, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48:237–257

    Article  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2012) FigTree v1.4; [accessed 2018 Oct 15] http://tree.bio.ed.ac.uk/software/figtree/

  • Ramirez-Chaves HE, Calderón-Capote MC, Suárez-Castro AF (2018) The genus Dasyprocta Illiger 1811 (Mammalia: Rodentia) in Colombia. Mastozool Neotropical 25:139–149

    Article  Google Scholar 

  • Ramos RS, Vale WG, Assis FL (2003) Karyotypic analysis in species of the genus Dasyprocta (Rodentia: Dasyproctidae) found in Brazilian Amazon. An Acad Brasil Ciências 75: 55-69

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Rodbell DT, Seltzer GO (2000) Rapid ice margin fluctuations during the Younger Dryas in the tropical Andes. Quater Research 54:328–338

    Article  CAS  Google Scholar 

  • Rogers AR, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Rogers AR, Fraley AE, Bamshad MJ, Watkins WS, Jorde LB (1996) Mitochondrial mismatch analysis is insensitive to the mutational process. Mol Biol Evol 13:895–902

    Article  CAS  PubMed  Google Scholar 

  • Rostworowski, M (1981) Recursos naturales renovables y pesca, siglos XVI y XVII. Colección Historia Andina 8. Instituto de Estudios Peruanos. Lima, Peru

  • Rothlisberger F (1987) 10,000 jahre gletschergeschichte der erde. Verlag Sauerlander, Aarau, Switzerland

  • Rowe DL, Dunn KA, Adkins RM, Honeycutt RL (2010) Molecular clocks keep dispersal hypotheses afloat: evidence for trans-Atlantic rafting by rodents. J Biogeog 37:305–324

    Article  Google Scholar 

  • Ruiz-García M, Pinedo-Castro M, Shostell JM (2014) How many genera and species of woolly monkeys (Atelidae, Platyrrhine, Primates) are?: First molecular analysis of Lagothrix flavicauda, an endemic Peruvian primate species. Mol Phylogenet Evol 79:179–198

    Article  PubMed  Google Scholar 

  • Ruiz-García M, Luengas-Villamil K, Leal L, Bernal-Parra LM, Shostell JM (2016) Phylogenetics and phylogeography of two large Neotropical rodents (Capybara, Hydrochoerus hydrochaeris, Hydrochaeridae and Paca, Cunniculus paca, Agoutidae; Rodentia) by means of mitochondrial genes: opposite patterns. In: Urbano KV (ed) Advances in Genetics Research, vol 16. Nova Science Publisher, New York, pp 151–159

    Google Scholar 

  • Ruiz-García M, Arias JY, Castellanos A, Kolter L, Shostell JM (2020a) Molecular evolution (mitochondrial and nuclear microsatellites markers) in the Andean Bear (Tremarctos ornatus; Ursidae, Carnivora): how many ESUs are there? In: Ortega J, Maldonado JE (eds) Mammalian Conservation Genetics. Springer-Verlag, New York, pp 165–194

    Chapter  Google Scholar 

  • Ruiz-García M, Arias JY, Restrepo H, Cáceres-Martínez CH, Shostell JM (2020b) The genetic structure of the spectacled bear (Tremarctos ornatus; Ursidae, Carnivora) in Colombia by means of mitochondrial and microsatellite markers. J Mammal 101:1072–1090

    Article  Google Scholar 

  • Ruiz-García M, Pinilla-Beltrán D, Murillo-García OE, Pinto CM, Brito J, Shostell JM (2021b) Comparative mitogenomics phylogeography of two Anteaters genera (Tamandua and Myrmecophaga; Myrmecophagidae, Xenarthra): Some discrepant evolutionary traits. Zool Res 42:525–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruíz-García M, Jaramillo M, Cáceres-Martínez CH, Shostell JM (2020c) The phylogeographic structure of the mountain coati (Nasuella olivacea; Procyonidae, Carnivora), and its phylogenetic relationships with other coati species (Nasua nasua and Nasua narica) as inferred by mitochondrial DNA. Mammal Biol 100:521–548

    Article  Google Scholar 

  • Ruiz-García M, Jaramillo MF, Shostell JM (2021a). How many taxa are within the genus Nasua (including Nasuella; Procyonidae, Carnivora)? The mitochondrial reconstruction of the complex evolutionary history of the coatis throughout the Neotropics. Zool Res (in press)

  • Saillard J, Forster P, Lynnerup N, Bandelt H-J, Norby S (2000) mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Amer J Human Genet 67:718–726

    Article  CAS  Google Scholar 

  • Schrider DR, Shanku AG, Kern AD (2016) Effects of linked selective sweeps on demographic inference and model selection. Genetics 204:1207–1223

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Servant M, Fontes TC, Rieu M, Saliege JF (1981) Phases climatiques arides holocenes dans le Sud-Ouest de l’ Amazonie (Bolivie). C R Acad Sci Ser 2 Paris 292: 1295–1297

  • Sheehan S, Harris K, Song YS (2013) Estimating variable effective population sizes from multiple genomes: a sequentially Markov conditional sampling distribution approach. Genetics 194:647–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvius KM, Fragoso JM (2003) Red-rumped Agouti (Dasyprocta leporine) home range use in an Amazonian Forest: implications for the aggregated distribution of forest trees. Biotropica 35:74–83

    Google Scholar 

  • Singh MD, Singh S, Garcia GW (2018) Understanding mammary activity in red-rumped agouti and implications for management and conservation of this neotropical game species. Brazilian J Biol 78:540–547

    Article  CAS  Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extension of the Mantel test of matrix corresponde. Syst Zool 35:627–632

    Article  Google Scholar 

  • Souza AL, Correa MM, Pessoa LM (2007) The first description of the karyotype of Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae) from Brazil. Mastozool Neotrop 14:227–233

    Google Scholar 

  • Spradling T, Hafner M, Demastes J (2001) Differences in rate of cytochrome-b evolution among species of rodents. J Mammal 82:65–80

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–1243

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Sullivan J, Holsinger KE, Simon C (1995) Among-site rate variation and phylogenetic analysis of 12S rRNA in Sigmodontine rodents. Mol Biol Evol 12:988–1001

    CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  • Tanabe AS (2011) Kakusan4 and Aminosan: Two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol Ecol Resour 11:914–921

    Article  PubMed  Google Scholar 

  • Thalmann O, Hebler J, Poinar HN, Paabo S, Vigilant L (2004) Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other apes. Mol Ecol 13:321–335

    Article  CAS  PubMed  Google Scholar 

  • Thomas O (1897) Descriptions of four new South American mammals. Ann Mag Nat Hist Ser 6(20):218–221

    Article  Google Scholar 

  • Thomas O (1898) Descriptions of new mammals from South America. Ann Mag Nat Hist Ser 7(2):265–275

    Article  Google Scholar 

  • Thomas O (1917) Notes on agoutis, with descriptions of new forms. Ann Mag Nat Hist Ser 8(20):310–313

    Article  Google Scholar 

  • Thomas O (1920) A further collection of mammals from Jujuy. Ann Mag Nat Hist ser 9(5):188–196

    Article  Google Scholar 

  • Thompson LG, Mosley E, Davies ME, Lin PN, Henderson KA, Coledal J, Bolzan JF, Liu KB (1995) Huascarán, Perú. Science 269: 46-50

  • Tschudi JJ (1845) Untersuchungen über die Fauna Peruana. Therologie Part 3:77-132; part 4:133-188; part 5:189-244. Scheitlin und Zollikofer, St Gallen

  • Upham NS, Patterson BD (2015) Evolution of caviomorph rodents: a complete phylogeny and timetree for living genera. Mammal Res-Series A 1:63–120

    Google Scholar 

  • Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180

    Article  PubMed  Google Scholar 

  • Van der Hammen T, Cleff AM (1992) Holocene changes of rainfall and river discharge in northern South America and the El Niño phenomenon. Erdkunde 46:252–256

    Google Scholar 

  • Van der Hammen T (1992) Historia, ecología y vegetación. Editorial Corporación Colombiana para la Amazonía, Araracuara, Bogotá DC., Colombia

  • Van der Hammen T (2001) Paleoecology of Amazonia. In: Guimaraes-Vieira IC, Silva JMC, Oren DC, D’Incao MA (eds). Diversidade biológica e cultural da Amazonia.. Museum Paraense Emilio Goeldi, Belem, Brazil, pp. 19–44

  • Van Vuuren BJ, Kinet S, Chopelet J, Catzeflis F (2004) Geographic patterns of genetic variation in four Neotropical rodents: conservation implications for small game mammals in French Guyana. Biol J Linn Soc 81:203–218

    Article  Google Scholar 

  • Vanegas L, van Vliet N, Cruz D, Sandrin F (2016) Contribución protéica de animales silvestres y domésticos a los menús de los contextos rurales, peri-urbano y urbanos de varias regiones de Colombia. Biota Colom 17:26–43

    Article  Google Scholar 

  • Von Tschudi JJ (1845) Untersuchungen über die Fauna Peruana. St. Gallen 1:1–262

    Google Scholar 

  • Voss RS, Lunde DP, Simmons NB (2001) The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna part 2. Nonvolant species. Bull Amer Mus Nat Hist 263:3–236

    Article  Google Scholar 

  • Wagler J (1832) Neue Sippen und Gattungen der Säugethiere und vögel. I. Säugthiere. Isis von Oken 25, 11: 1218-1221

  • Watson DF (1992) Contouring: a guide to the analysis and display of spatial data. Pergamon Press, New York

  • West RG (1967) The Quaternary of the British Isles. The geologic systems. In: Rankama K (ed) The Quaternary, vol 2. Interscience, New York, pp 1–87

    Google Scholar 

  • Wilson DE, Reeder DM (2005). Mammal species of the world, a taxonomic and geographic reference. Third edition. The Johns Hopkins University Press, Baltimore

  • Woods CA, Kilpatrick CW (2005) Infraorder Hystricognathi. In: Wilson DE, Reeder DM (eds) Mammal species of the world 3th edition, John Hopkins Press, pp. 1538–1600

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Lemey P (2009) Assessing substitution saturation with DAMBE. In: Salemi MA, Vandamme M, Lemey P (eds) The phylogenetic handbook: a practical approach to phylogenetic Analysis and Hypothesis Testing. Cambridge University Press, Cambridge, pp 615–630

    Chapter  Google Scholar 

  • Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26(1):1–7

Download references

Acknowledgements

Thanks to Dr. Diana Alvarez, Pablo Escobar-Armel, Nicolás Lichilín, and Luisa Fernanda Castellanos-Mora for their respective help in obtaining Dasyprocta samples during the last 20 years. Thanks to the Ministerio del Ambiente Ecuatoriano (MAE) in Santo Domingo de Tsáchilas and in Coca, and INABIO (Ecuador), to the Instituto von Humboldt (Colombia), to the Peruvian Ministry of Environment, PRODUCE (Dirección Nacional de Extracción y Procesamiento Pesquero), Consejo Nacional del Ambiente and the Instituto Nacional de Recursos Naturales (INRENA) from Peru, to the Colección Boliviana de Fauna (Dr. Julieta Vargas), and to CITES Bolivia for their role in facilitating the obtainment of the collection permits in Ecuador, Colombia, Peru and Bolivia. The first author also thank the many people of diverse Indian tribes in Ecuador (Kichwa, Huaorani, Shuar and Achuar), in Colombia (Jaguas, Ticunas, Huitoto, Cocama, Tucano, Nonuya, Yuri and Yucuna), in Peru (Bora, Ocaina, Shipigo-Comibo, Capanahua, Angoteros, Orejón, Cocama, Kishuarana and Alamas), Bolivia (Sirionó, Canichana, Cayubaba and Chacobo), and to diverse Mayan communities and peasants from Guatemala, Honduras, and Panama for their assistance in obtaining samples of Dasyprocta.

Author information

Authors and Affiliations

Authors

Contributions

M. R. G. designed and obtained a large proportion of the samples for the study. E. A. R., H. Z., and M. D. S. helped to obtain some relevant samples in Bolivia, southern Peru, and Trinidad Island, respectively. M. R. G. and J. M. S. supervised the molecular analyses. A.M.C. and K.L.V performed the laboratory procedures. M. R. G. performed the statistical analyses and wrote the manuscript with input from the other authors. M. R. G. submitted the sequences to GenBank. E. A. R., H. Z, M. D. S., A. M. C., K. L. V., and J. M. S. revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Manuel Ruiz-García.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Joanna Stojak

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 182 KB)

Supplementary file2 (DOC 201 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-García, M., Cáceres, A.M., Luengas-Villamil, K. et al. Mitogenomic phylogenetics and population genetics of several taxa of agouties (Dasyprocta sp., Dasyproctidae, Rodentia): molecular nonexistence of some claimed endemic taxa. Mamm Res 67, 367–397 (2022). https://doi.org/10.1007/s13364-022-00626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-022-00626-6

Keywords

Navigation