Skip to main content

Advertisement

Log in

Application of the combinatorial approaches of medicinal  and aromatic plants with nanotechnology and its impacts on healthcare

  • Review article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Medicinal and aromatic plants are natural raw materials. Since ancient times these herbal materials are being commonly used as herbal drugs, food products, and cosmetics. The phytomolecules isolated from the medicinal and aromatic plants (MAPs) are in high demand specifically in drug industries. However, these phytomolecules have certain limitations of low absorption, high toxicity, and other side effects, bioavailability and efficacy. These limitations may be overcome by using nanotechnological tools. The plant extract or essential oil of MAPs are also useful in the synthesis of nanoparticles. In future this combinatorial application of MAPs and nanotechnology would be advantageous in the healthcare area.

Methods

Literature search was performed using databases like Pubmed, Scopus and Google Scholar with the keywords “nanoparticles,” “phytomolecules,” “medicinal and aromatic plants” and “green synthesis of nanoparticles” in the text.

Result

Phytomolecules of medicinal and aromatic plants like curcumin, camptothecin, thymol, and eugenol have certain limitations of bioavailability, efficacy, and solubility. It limits its biological activity and therefore application in the biomedical area. The increment in the biological activity and sustained delivery was observed after the encapsulation of these potent phytomolecules encapsulated in the nanocarriers. Besides, MAPs and/or their molecules/oils mediate the synthesis of metal nanocarriers with less toxicity.

Conclusion

This review highlights the impact of the combination of the MAPs with the nanotechnology along with the challenges. It would be an effective technique for the efficient delivery of different phytomolecules and also in the synthesis of novel nano-materials, which escalates the opportunity of exploration of potential molecules of MAPs.

Graphical representation of the combinatorial approach of MAPs and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sen S, Chakraborty R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: importance, challenges and future. J Tradit Complement Med. 2017;7(2):234–44.

    Article  PubMed  Google Scholar 

  2. Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med. 2014;2014.

  3. Adorjan B, Buchbauer G. Biological properties of essential oils: an updated review. Flavour Fragr J. 2010;25(6):407–26.

    Article  CAS  Google Scholar 

  4. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.

    Article  CAS  PubMed  Google Scholar 

  5. Havel HA. Where are the Nanodrugs? An industry perspective on development of drug products containing nanomaterials. AAPS J. 2016;18(6):1351–3.

    Article  CAS  PubMed  Google Scholar 

  6. Ventola CL. Progress in nanomedicine: approved and investigational Nanodrugs. PT. 2017;42(12):742.

    Google Scholar 

  7. Keller AA, McFerran S, Lazareva A, Suh S. Global life cycle releases of engineered nanomaterials. J Nanopart Res. 2013;15(6):1692.

    Article  Google Scholar 

  8. Jackson SJT, Murphy LL, Venema RC, Singletary KW, Young AJ. Curcumin binds tubulin, induces mitotic catastrophe, and impedes normal endothelial cell proliferation. Food Chem Toxicol. 2013;60:431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thangapazham RL, Sharad S, Maheshwari RK. Skin regenerative potentials of curcumin. BioFactors. 2013;39(1):141–9.

    Article  CAS  PubMed  Google Scholar 

  10. Gao M, Chen C, Fan A, Zhang J, Kong D, Wang Z, et al. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers. Nanotechnology. 2015;26(27):275101.

  11. Alexander SP, Mathie A, Peters JA. Guide to receptors and channels (GRAC), 3rd edition. Br J Pharmacol. 2008;153(S2):S1–1.

  12. Grotenhermen F, Müller-Vahl K. The therapeutic potential of cannabis and cannabinoids. Dtsch Arztebl Int. 2012;109(29–30):495.

    PubMed  PubMed Central  Google Scholar 

  13. Du F, Meng H, Xu K, Xu Y, Luo P, Luo Y, et al. CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol)/poly (l-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Colloids Surf B: Biointerfaces. 2014;113:230–6.

  14. Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed. 2013;3(4):253–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marques HMC. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J. 2010;25(5):313–26.

    Article  CAS  Google Scholar 

  16. Xu J, Zhou F, Ji BP, Pei RS, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol. 2008;47(3):174–9.

    Article  CAS  PubMed  Google Scholar 

  17. Rahman MA, Harwansh R, Mirza MA, Hussain S, Hussain A. Oral lipid based drug delivery system (LBDDS): formulation, characterization and application: a review. Curr Drug Deliv. 2011;8(4):330–45.

    Article  CAS  PubMed  Google Scholar 

  18. Piran P, Kafil HS, Ghanbarzadeh S, Safdari R, Hamishehkar H. Formulation of menthol-loaded nanostructured lipid carriers to enhance its antimicrobial activity for food preservation. Adv Pharm Bull. 2017;7(2):261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ansari S, Sameem M, Islam F. Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res. 2012;3(3):142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chou CW, Batnyam O, Hung HS, Harn HJ, Lee WF, Lin HR, et al. Highly bioavailable anticancer herbal-loaded nanocarriers for use against breast and colon cancer in vitro and in vivo systems. Polym Chem. 2013;4(6):2040–52.

  21. Dixit N, Vaibhav K, Pandey RS, Jain UK, Katare OP, Katyal A, et al. Improved cisplatin delivery in cervical cancer cells by utilizing folate-grafted non-aggregated gelatin nanoparticles. Biomed Pharmacother. 2015;69:1–10.

  22. Das S, Das J, Samadder A, Paul A, Khuda-Bukhsh AR. Efficacy of PLGA-loaded apigenin nanoparticles in benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades. Food Chem Toxicol. 2013;62:670–80.

    Article  CAS  PubMed  Google Scholar 

  23. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B: Biointerfaces. 2010;80(2):184–92.

    Article  CAS  PubMed  Google Scholar 

  24. Bala I, Bhardwaj V, Hariharan S, Kharade SV, Roy N, Ravi Kumar MN. Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxis system for oral administration. J Drug Target. 2006;14(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  25. Tong-Un T, Wannanon P, Wattanatho J, Phachonpai W. Quercetin liposomes via nasal administration reduce anxiety and depression-like behaviors and enhance cognitive performances in rats. Am J Pharmacol Toxicol. 2010;5(2):80–8.

    Article  CAS  Google Scholar 

  26. Kristl J, Teskač K, Caddeo C, Abramović Z, Šentjurc M. Improvements of cellular stress response on resveratrol in liposomes. Eur J Pharm Biopharm. 2009;73(2):253–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kumari A, Yadav SK, Pakade YB, Kumar V, Singh B, Chaudhary A, et al. Nanoencapsulation and characterization of Albizia chinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloids Surf B: Biointerfaces. 2011;82(1):224–32.

  28. Sanna V, Lubinu G, Madau P, Pala N, Nurra S, Mariani A, et al. Polymeric nanoparticles encapsulating white tea extract for nutraceutical application. J Agric Food Chem. 2015;63(7):2026–32.

  29. Liang J, Li F, Fang Y, Yang W, An X, Zhao L, et al. Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles. Colloids Surf B: Biointerfaces. 2011;82(2):297–301.

  30. Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI, et al. Introducing Nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol Epigallocatechin-3-Gallate. Cancer Res. 2009;69(5):1712–6.

  31. Dehkharghanian M, Lacroix M, Vijayalakshmi MA. Antioxidant properties of green tea polyphenols encapsulated in caseinate beads. Dairy Sci Technol. 2009;89(5):485–99.

    Article  CAS  Google Scholar 

  32. Fachriyah E. Cinnamomum casia extract encapsulated Nanochitosan as Antihypercholesterol. IOP Conf Ser Mater Sci Eng. 2017;172:012035.

    Article  Google Scholar 

  33. Hill LE, Taylor TM, Gomes C. Antimicrobial efficacy of poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped cinnamon bark extract against Listeria monocytogenes and Salmonella typhimurium. J Food Sci. 2013;78(4):N626–32.

    Article  CAS  PubMed  Google Scholar 

  34. Tiwari S, Gupta R. Development of herbal biodegradable polymeric nanoparticle from Clerodendrum infortunatum L. J Bionanoscience. 2013;7(4):341–7.

    Article  CAS  Google Scholar 

  35. Jahan N, Aslam S, Rahman KU, Fazal T, Anwar F, Saher R. Formulation and characterisation of nanosuspension of herbal extracts for enhanced antiradical potential. J Exp Nanosci. 2016;11(1):72–80.

    Article  CAS  Google Scholar 

  36. Kumari P, Swami MO, Nadipalli SK, Myneni S, Ghosh B, Biswas S. Curcumin delivery by poly(Lactide)-based co-polymeric micelles: An in vitro anticancer study. Pharm Res. 2016;33(4):826–41.

    Article  CAS  PubMed  Google Scholar 

  37. Agrawal R, Kaur IP. Inhibitory effect of encapsulated curcumin on ultraviolet-induced Photoaging in mice. Rejuvenation Res. 2010;13(4):397–410.

    Article  CAS  PubMed  Google Scholar 

  38. Lee JS, Kim GH, Lee HG. Characteristics and antioxidant activity of Elsholtzia splendens extract-loaded nanoparticles. J Agric Food Chem. 2010;58(6):3316–21.

    Article  CAS  PubMed  Google Scholar 

  39. Bhattacharyya SS, Paul S, Khuda-Bukhsh AR. Encapsulated plant extract ( Gelsemium sempervirens ) poly (lactide-co-glycolide) nanoparticles enhance cellular uptake and increase bioactivity in vitro. Exp Biol Med. 2010;235(6):678–88.

    Article  CAS  Google Scholar 

  40. Pereira MC, Hill LE, Zambiazi RC, Mertens-Talcott S, Talcott S, Gomes CL. Nanoencapsulation of hydrophobic phytochemicals using poly (dl-lactide-co-glycolide) (PLGA) for antioxidant and antimicrobial delivery applications: Guabiroba fruit (Campomanesia xanthocarpa O. berg) study. LWT Food Sci Technol. 2015;63(1):100–7.

    Article  CAS  Google Scholar 

  41. Dong P, Wang X, Gu Y, Wang Y, Wang Y, Gong C, et al. Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloids Surfaces A Physicochem Eng Asp. 2010;358(1–3):128–34.

  42. Gortzi O, Lalas S, Chinou I, Tsaknis J. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur Food Res Technol. 2008;226(3):583–90.

    Article  CAS  Google Scholar 

  43. Kesente M, Kavetsou E, Roussaki M, Blidi S, Loupassaki S, Chanioti S, et al. Encapsulation of olive leaves extracts in biodegradable PLA nanoparticles for use in cosmetic formulation. Bioeng. 2017;4(3):75.

  44. Strasser M, Noriega P, Löbenberg R, Bou-Chacra N, Bacchi EM. Antiulcerogenic potential activity of free and nanoencapsulated Passiflora serratodigitata L. extracts. Biomed Res Int. 2014;2014.

  45. Choi W, No RH, Kwon HS, Lee HY. Enhancement of skin anti-inflammatory activities of Scutellaria baicalensis extract using a nanoencapsulation process. J Cosmet Laser Ther. 2014;16(6):271–8.

    Article  PubMed  Google Scholar 

  46. Samadder A, Das S, Das J, Paul A, Khuda-Bukhsh A. Ameliorative effects of Syzygium jambolanum extract and its poly (lactic-co-glycolic) acid Nano-encapsulated form on arsenic-induced hyperglycemic stress: a multi-parametric evaluation. J Acupunct Meridian Stud. 2012;5(6):310–8.

    Article  PubMed  Google Scholar 

  47. Gortzi O, Lalas S, Chinou I, Tsaknis J. Reevaluation of antimicrobial and antioxidant activity of thymus spp. extracts before and after encapsulation in liposomes. J Food Prot. 2006;69(12):2998–3005.

    Article  PubMed  Google Scholar 

  48. Chen MX, Li BK, Yin DK, Liang J, Li SS, Peng DY. Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery. Carbohydr Polym. 2014;111:298–304.

    Article  CAS  PubMed  Google Scholar 

  49. Bhattacharya S, Ghosh A. Phytosomes: the emerging technology for enhancement of bioavailability of botanicals and nutraceuticals. Int J Health Res. 2009;2(1):141–53.

    Google Scholar 

  50. Rajendran R, Radhai R, Kotresh TM, Csiszar E. Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr Polym. 2013;91(2):613–7.

    Article  CAS  PubMed  Google Scholar 

  51. Zheng X, Kan B, Gou M, Fu S, Zhang J, Men K, et al. Preparation of MPEG–PLA nanoparticle for honokiol delivery in vitro. Int J Pharm. 2010;386(1–2):262–7.

  52. Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346(1–2):160–8.

    Article  CAS  PubMed  Google Scholar 

  53. Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127(3):208–18.

  54. Mukerjee A, Vishwanatha JK. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res. 2009;29(10):3867–75.

    CAS  PubMed  Google Scholar 

  55. Das J, Das S, Samadder A, Bhadra K, Khuda-Bukhsh AR. Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur J Pharm Sci. 2012;47(2):313–24.

    Article  CAS  PubMed  Google Scholar 

  56. Li Z, Wu X, Li J, Yao L, Sun L, Shi Y, et al. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model. Int J Nanomedicine. 2012;7:2389.

  57. Zhang J, Han X, Li X, Luo Y, Zhao H, Yang M, et al. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats. Int J Nanomedicine. 2012;7:4299.

  58. Han L, Fu Y, Cole AJ, Liu J, Wang J. Co-encapsulation and sustained-release of four components in ginkgo terpenes from injectable PELGE nanoparticles. Fitoterapia. 2012;83(4):721–31.

    Article  CAS  PubMed  Google Scholar 

  59. de Oliveira JK, Ronik DF, Ascari J, Mainardes RM, Khalil NM. A stability-indicating high performance liquid chromatography method to determine apocynin in nanoparticles. J Pharm Anal. 2017;7(2):129–33.

    Article  PubMed  Google Scholar 

  60. Aman RM, Abu Hashim II, Meshali MM. Novel chitosan-based solid-lipid nanoparticles to enhance the bio-residence of the miraculous phytochemical “Apocynin”. Eur J Pharm Sci. 2018;124:304–18.

    Article  CAS  PubMed  Google Scholar 

  61. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–62.

    Article  CAS  PubMed  Google Scholar 

  62. Esfandyari-Manesh M, Ghaedi Z, Asemi M, Khanavi M, Manayi A, Jamalifar H, et al. Study of antimicrobial activity of anethole and carvone loaded PLGA nanoparticles. J Pharm Res. 2013;7(4):290–5.

  63. Sinico C, De Logu A, Lai F, Valenti D, Manconi M, Loy G, et al. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur J Pharm Biopharm. 2005;59(1):161–8.

  64. Ahmed J, Hiremath N, Jacob H. Antimicrobial efficacies of essential oils/nanoparticles incorporated polylactide films against L. monocytogenes and S. typhimurium on contaminated cheese. Int J Food Prop. 2017;20(1):53–67.

    Article  CAS  Google Scholar 

  65. Hill LE, Gomes C, Taylor TM. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol. 2013;51(1):86–93.

    Article  CAS  Google Scholar 

  66. Sotelo-Boyás M, Correa-Pacheco Z, Bautista-Baños S. Gómez y Gómez Y. release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int J Biol Macromol. 2017;103:409–14.

    Article  CAS  PubMed  Google Scholar 

  67. Ahmed J, Arfat YA, Bher A, Mulla M, Jacob H, Auras R. Active chicken meat packaging based on Polylactide films and bimetallic ag-cu nanoparticles and essential oil. J Food Sci. 2018;83(5):1299–310.

    Article  CAS  PubMed  Google Scholar 

  68. Karimirad R, Behnamian M, Dezhsetan S, Sonnenberg A. Chitosan nanoparticles loaded Citrus aurantium essential oil: a novel delivery system for preserving the postharvest quality of Agaricus bisporus. J Sci Food Agric. 2018;98(13):5112–9.

    Article  CAS  PubMed  Google Scholar 

  69. Karimirad R, Behnamian M, Dezhsetan S. Development and characterization of nano biopolymer containing cumin oil as a new approach to enhance antioxidant properties of button mushroom. Int J Biol Macromol. 2018;113:662–8.

    Article  CAS  PubMed  Google Scholar 

  70. Natrajan D, Srinivasan S, Sundar K, Ravindran A. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J Food Drug Anal. 2015;23(3):560–8.

    Article  CAS  PubMed  Google Scholar 

  71. Lu WC, Huang DW, Wang CC, Yeh CH, Tsai JC, Huang YT, et al. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J Food Drug Anal. 2018;26(1):82–9.

  72. Herculano ED, de Paula HC, de Figueiredo EA, Dias FG, Pereira VD. Physicochemical and antimicrobial properties of nanoencapsulated eucalyptus staigeriana essential oil. LWT Food Sci Technol. 2015;61(2):484–91.

    Article  CAS  Google Scholar 

  73. Saporito F, Sandri G, Bonferoni MC, Rossi S, Boselli C, Cornaglia AI, et al. Essential oil-loaded lipid nanoparticles for wound healing. Int J Nanomedicine. 2017;13:175.

  74. Fazly Bazzaz BS, Khameneh B, Namazi N, Iranshahi M, Davoodi D, Golmohammadzadeh S. Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett Appl Microbiol. 2018;66(6):506–13.

    Article  CAS  PubMed  Google Scholar 

  75. Flores FC, De Lima JA, Ribeiro RF, Alves SH, Rolim CM, Beck RC, et al. Antifungal activity of Nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia. 2013;175(3–4):281–6.

  76. Ge Y, Ge M. Development of tea tree oil-loaded liposomal formulation using response surface methodology. J Liposome Res. 2015;25(3):222–31.

    Article  CAS  PubMed  Google Scholar 

  77. Beyki M, Zhaveh S, Khalili ST, Rahmani-Cherati T, Abollahi A, Bayat M, et al. Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against aspergillus flavus. Ind Crop Prod. 2014;54:310–9.

  78. Liolios CC, Gortzi O, Lalas S, Tsaknis J, Chinou I. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 2009;112(1):77–83.

    Article  CAS  Google Scholar 

  79. Ghosh V, Mukherjee A, Chandrasekaran N. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids Surf B: Biointerfaces. 2014;114:392–7.

    Article  CAS  PubMed  Google Scholar 

  80. Engel JB, Heckler C, Tondo EC, Daroit DJ, da Silva Malheiros P. Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against salmonella and Staphylococcus aureus adhered to stainless steel. Int J Food Microbiol. 2017;252:18–23.

    Article  CAS  PubMed  Google Scholar 

  81. Keawchaoon L, Yoksan R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf B: Biointerfaces. 2011;84(1):163–71.

    Article  CAS  PubMed  Google Scholar 

  82. Wattanasatcha A, Rengpipat S, Wanichwecharungruang S. Thymol nanospheres as an effective anti-bacterial agent. Int J Pharm. 2012;434(1–2):360–5.

    Article  CAS  PubMed  Google Scholar 

  83. Adhavan P, Kaur G, Princy A, Murugan R. Essential oil nanoemulsions of wild patchouli attenuate multi-drug resistant gram-positive, gram-negative and Candida albicans. Ind Crop Prod. 2017;100:106–16.

    Article  CAS  Google Scholar 

  84. Marchiori MCL, Rigon C, Camponogara C, Oliveira SM, Cruz L. Hydrogel containing silibinin-loaded pomegranate oil based nanocapsules exhibits anti-inflammatory effects on skin damage UVB radiation-induced in mice. J Photochem Photobiol B Biol. 2017;170:25–32.

    Article  CAS  Google Scholar 

  85. Gharenaghadeh S, Karimi N, Forghani S, Nourazarian M, Gharehnaghadeh S, Kafil HS. Application of Salvia multicaulis essential oil-containing nanoemulsion against food-borne pathogens. Food Biosci. 2017;19:128–33.

    Article  CAS  Google Scholar 

  86. Feyzioglu GC, Tornuk F. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT Food Sci Technol. 2016;70:104–10.

    Article  CAS  Google Scholar 

  87. Majeed H, Liu F, Hategekimana J, Sharif HR, Qi J, Ali B, et al. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chem. 2016;197:75–83.

  88. Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ. Superior antibacterial activity of nanoemulsion of thymus daenensis essential oil against E. coli. Food Chem. 2016;194:410–5.

    Article  CAS  PubMed  Google Scholar 

  89. Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-Cherati T, Abdollahi A, et al. Encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against aspergillus flavus. LWT Food Sci Technol. 2015;60(1):502–8.

  90. Asprea M, Leto I, Bergonzi MC, Bilia AR. Thyme essential oil loaded in nanocochleates: encapsulation efficiency, in vitro release study and antioxidant activity. LWT. 2017;77:497–502.

    Article  CAS  Google Scholar 

  91. Detoni CB, Cabral-Albuquerque ECM, Hohlemweger SVA, Sampaio C, Barros TF, Velozo ES. Essential oil from Zanthoxylum tingoassuiba loaded into multilamellar liposomes useful as antimicrobial agents. J Microencapsul. 2009;26(8):684–91.

    Article  CAS  PubMed  Google Scholar 

  92. Woranuch S, Yoksan R. Eugenol-loaded chitosan nanoparticles: I. thermal stability improvement of eugenol through encapsulation. Carbohydr Polym. 2013;96(2):578–85.

    Article  CAS  PubMed  Google Scholar 

  93. Yang FL, Li XG, Zhu F, Lei CL. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem. 2009;57(21):10156–62.

    Article  CAS  PubMed  Google Scholar 

  94. Li KK, Yin SW, Yang XQ, Tang CH, Wei ZH. Fabrication and characterization of novel antimicrobial films derived from thymol-loaded Zein–sodium Caseinate (SC) nanoparticles. J Agric Food Chem. 2012;60(46):11592–600.

    Article  CAS  PubMed  Google Scholar 

  95. Wen P, Zhu DH, Wu H, Zong MH, Jing YR, Han SY. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control. 2016;59:366–76.

    Article  CAS  Google Scholar 

  96. Biddeci G, Cavallaro G, Di Blasi F, Lazzara G, Massaro M, Milioto S, et al. Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydr Polym. 2016;152:548–57.

  97. Feng N, Zhao JH, Liu Y, Wang Z, Zhang YT, Feng NP. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int J Nanomedicine. 2012;7:2033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mohammadi A, Hashemi M, Hosseini SM. Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov Food Sci Emerg Technol. 2015;28:73–80.

    Article  CAS  Google Scholar 

  99. Mukunthan KS, Balaji S. Cashew apple juice ( Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int J Green Nanotechnol. 2012;4(2):71–9.

    Article  CAS  Google Scholar 

  100. Beg M, Maji A, Mandal AK, Das S, Aktara MN, Jha PK, et al. Green synthesis of silver nanoparticles using Pongamia pinnata seed: characterization, antibacterial property, and spectroscopic investigation of interaction with human serum albumin. J Mol Recognit. 2017;30(1):e2565.

  101. Nagajyothi PC, Muthuraman P, Sreekanth TV, Kim DH, Shim J. Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem. 2017;10(2):215–25.

    Article  CAS  Google Scholar 

  102. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B: Biointerfaces. 2010;76(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  103. Rastogi L, Arunachalam J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater Chem Phys. 2011;129(1–2):558–63.

    Article  CAS  Google Scholar 

  104. Deyá C, Bellotti N. Biosynthesized silver nanoparticles to control fungal infections in indoor environments. Adv Nat Sci Nanosci Nanotechnol. 2017;8(2):025005.

    Article  CAS  Google Scholar 

  105. Niraimathi KL, Sudha V, Lavanya R, Brindha P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf B: Biointerfaces. 2013;102:288–91.

    Article  CAS  PubMed  Google Scholar 

  106. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N. Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater Sci Semicond Process. 2015;39:621–8.

    Article  CAS  Google Scholar 

  107. Jagtap UB, Bapat VA. Green synthesis of silver nanoparticles using Artocarpus heterophyllus lam. Seed extract and its antibacterial activity. Ind Crop Prod. 2013;46:132–7.

    Article  CAS  Google Scholar 

  108. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process. 2015;32:55–61.

    Article  CAS  Google Scholar 

  109. Jeeva K, Thiyagarajan M, Elangovan V, Geetha N, Venkatachalam P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind Crop Prod. 2014;52:714–20.

    Article  CAS  Google Scholar 

  110. Baskaralingam V, Sargunar CG, Lin YC, Chen JC. Green synthesis of silver nanoparticles through Calotropis gigantea leaf extracts and evaluation of antibacterial activity against vibrio alginolyticus. Nanotechnol Dev. 2012;2(1):e3–3.

  111. Marimuthu S, Rahuman AA, Jayaseelan C, Kirthi AV, Santhoshkumar T, Velayutham K, et al. Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac J Trop Med. 2013;6(9):682–8.

  112. Venkatachalam M, Govindaraju K, Mohamed Sadiq A, Tamilselvan S, Ganesh Kumar V, Singaravelu G. Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochim Acta Part A Mol Biomol Spectrosc. 2013;116:331–8.

  113. Suresh D, Nethravathi PC, Udayabhanu RH, Nagabhushana H, Sharma SC. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process. 2015;31:446–54.

    Article  CAS  Google Scholar 

  114. Saravanakumar A, Ganesh M, Jayaprakash J, Jang HT. Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. J Ind Eng Chem. 2015;28:277–81.

    Article  CAS  Google Scholar 

  115. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed. 2012;2(7):574–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nagarajan S, Arumugam Kuppusamy K. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J Nanobiotechnology. 2013;11(1):39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barbinta-Patrascu ME, Badea N, Ungureanu C, Constantin M, Pirvu C, Rau I. Silver-based biohybrids “green” synthesized from Chelidonium majus L. Opt Mater. 2016;56:94–9.

    Article  CAS  Google Scholar 

  118. Smitha SL, Gopchandran KG. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc. 2013;102:114–9.

    Article  CAS  Google Scholar 

  119. K S, S G, T R, T B. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J Nanobiotechnology. 2011;9(1):43.

    Article  CAS  PubMed Central  Google Scholar 

  120. Mariselvam R, Ranjitsingh AJ, Usha Raja Nanthini A, Kalirajan K, Padmalatha C, Mosae Selvakumar P. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (family: Arecaceae) for enhanced antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;129:537–41.

    Article  CAS  Google Scholar 

  121. Nagajyothi PC, Sreekanth TV, Tettey CO, Jun YI, Mook SH. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg Med Chem Lett. 2014;24(17):4298–303.

    Article  CAS  PubMed  Google Scholar 

  122. Wang C, Mathiyalagan R, Kim YJ, Castro-Aceituno V, Singh P, Ahn S, et al. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int J Nanomedicine. 2016;11:3691.

  123. Karuppaiya P, Satheeshkumar E, Chao WT, Kao LY, Chen EC, Tsay HS. Anti-metastatic activity of biologically synthesized gold nanoparticles on human fibrosarcoma cell line HT-1080. Colloids Surf B: Biointerfaces. 2013;110:163–70.

    Article  CAS  PubMed  Google Scholar 

  124. Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C. 2015;49:408–15.

    Article  CAS  Google Scholar 

  125. Rajendran A, Siva E, Dhanraj C, Senthilkumar S. A green and facile approach for the synthesis copper oxide nanoparticles using Hibiscus rosa-sinensis flower extracts and It’s antibacterial activities. J Bioprocess Biotech. 2018;08(3):324.

    Google Scholar 

  126. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, et al. Green synthesis of zinc oxide nanoparticles using hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015;5(7):4993–5003.

  127. Jayandran M, Haneefa MM, Balasubramanian V. Green synthesis of copper nanoparticles using natural reducer and stabilizerand an evaluation of antimicrobial activity. J Chem Pharm Res. 2015;7(2):251–9.

    CAS  Google Scholar 

  128. Lee HJ, Song JY, Kim BS. Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol. 2013;88(11):1971–7.

    CAS  Google Scholar 

  129. MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B: Biointerfaces. 2011;85(2):360–5.

    Article  CAS  PubMed  Google Scholar 

  130. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. For enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B: Biointerfaces. 2013;108:255–9.

    Article  CAS  PubMed  Google Scholar 

  131. Bankar A, Joshi B, Ravi Kumar A, Zinjarde S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B: Biointerfaces. 2010;80(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  132. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Gopi N, Ekambaram P, Pachaiappan R, et al. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant enterococcus faecalis biofilms and human lung cancer cells (A549). Microb Pathog. 2017;102:173–83.

  133. Gopinath M, Subbaiya R, Selvam MM, Suresh D. Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol App Sci. 2014;3(9):814–8.

    CAS  Google Scholar 

  134. Gogoi N, Babu PJ, Mahanta C, Bora U. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Mater Sci Eng C. 2015;46:463–9.

    Article  CAS  Google Scholar 

  135. Jain S, Mehata MS. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep. 2017;7(1):15867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rajiv P, Rajeshwari S, Venckatesh R. Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta Part A Mol Biomol Spectrosc. 2013;112:384–7.

    Article  CAS  Google Scholar 

  137. Caroling G, Vinodhini E, Ranjitham AM, Shanthi P. Biosynthesis of copper nanoparticles using aqueous Phyllanthus Embilica (gooseberry) extract-characterisation and study of antimicrobial effects. Int J Nanomater Chem. 2015;1(2):53–63.

    Google Scholar 

  138. Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B. Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C. 2016;58:44–52.

    Article  CAS  Google Scholar 

  139. Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M, Singaravelu G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 2013;4(4):91–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Iram F, Iqbal MS, Athar MM, Saeed MZ, Yasmeen A, Ahmad R. Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydr Polym. 2014;104:29–33.

    Article  CAS  PubMed  Google Scholar 

  141. Saratale RG, Benelli G, Kumar G, Kim DS, Saratale GD. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ Sci Pollut Res. 2018;25(11):10392–406.

    Article  CAS  Google Scholar 

  142. Bhakya S, Muthukrishnan S, Sukumaran M, Grijalva M, Cumbal L, Benjamin JF, et al. Antimicrobial, antioxidant and anticancer activity of biogenic silver nanoparticles – an experimental report. RSC Adv. 2016;6(84):81436–46.

  143. Padil VV, Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine. 2013;8:889.

    PubMed Central  Google Scholar 

  144. Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar M. Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B: Biointerfaces. 2012;95:284–8.

    Article  CAS  PubMed  Google Scholar 

  145. Jamdagni P, Khatri P, Rana JS. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ - Sci. 2018;30(2):168–75.

    Article  Google Scholar 

  146. Jha AK, Prasad K. Biosynthesis of gold nanoparticles using common aromatic plants. Int J Green Nanotechnol. 2012;4(3):219–24.

    Article  CAS  Google Scholar 

  147. Alsalhi MS, Devanesan S, Alfuraydi AA, Vishnubalaji R, Munusamy MA, Murugan K, et al. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells. Int J Nanomedicine. 2016;11:4439.

  148. Thanighaiarassu RR, Sivamai P, Devika R, Nambikkairaj B. Green synthesis of gold nanoparticles characterization by using plant essential oil Menthapiperita and their antifungal activity against human pathogenic fungi. J Nanomed Nanotechnol. 2014;5(5):1.

    Google Scholar 

  149. Kung ML, Lin PY, Hsieh CW, Tai MH, Wu DC, Kuo CH, et al. Bifunctional peppermint oil nanoparticles for antibacterial activity and fluorescence imaging. ACS Sustain Chem Eng. 2014;2(7):1769–75.

  150. Mohanta YK, Panda SK, Jayabalan R, Sharma N, Bastia AK, Mohanta TK. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front Mol Biosci. 2017;4:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kokila T, Ramesh PS, Geetha D. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol Environ Saf. 2016;134:467–73.

    Article  CAS  PubMed  Google Scholar 

  152. Bhat R, Sharanabasava VG, Deshpande R, Shetti U, Sanjeev G, Venkataraman A. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus Florida and its anticancer evaluation. J Photochem Photobiol B Biol. 2013;125:63–9.

    Article  CAS  Google Scholar 

  153. He W, Cai J, Jiang X, Yin JJ, Meng Q. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic au@TiO 2 nanostructures with enhanced activity. Phys Chem Chem Phys. 2018;20(23):16117–25.

    Article  CAS  PubMed  Google Scholar 

  154. Farooq MU, Novosad V, Rozhkova EA, Wali H, Ali A, Fateh AA, et al. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci Rep. 2018;8(1):2907.

  155. van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day Oral exposure. ACS Nano. 2012;6(8):7427–42.

  156. Sahu SC, Zheng J, Graham L, Chen L, Ihrie J, Yourick JJ, et al. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol. 2014;34:1155–66.

  157. Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ. 2016;4:e2589.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Roy N, Gaur A, Jain A, Bhattacharya S, Rani V. Green synthesis of silver nanoparticles: An approach to overcome toxicity. Environ Toxicol Pharmacol. 2013;36(3):807–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Director, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow for rendering essential facilities required for the experimental work. We are also thankful to Council of Scientific and Industrial Research, New Delhi for funding support under CSIR-Aroma Mission (HCP007) and CSIR-Phytopharma Mission (HCP010). PK aquiesce University Grants Commission, New Delhi for Rajeev Gandhi National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abha Meena.

Ethics declarations

Conflict of interest

The author(s) confirm that this article content has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Importance of medicinal and aromatic plants along with certain limitations

• The combinatorial approach of nanotechnology with MAPs

• Effectiveness of the approach in phytomolecule delivery and green synthesis of nanoparticles.

• Challenges of the combinatorial approaches

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Luqman, S. & Meena, A. Application of the combinatorial approaches of medicinal  and aromatic plants with nanotechnology and its impacts on healthcare. DARU J Pharm Sci 27, 475–489 (2019). https://doi.org/10.1007/s40199-019-00271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00271-6

Keywords

Navigation