Skip to main content
Log in

Hemodynamic Quality Improvement Bundle to Reduce the Use of Inotropes in Extreme Preterm Neonates

  • Original Research Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Background

We evaluated the effect of the quality improvement (QI) bundle on the rate of inotrope use and associated morbidities.

Methods

We included inborn preterm neonates born at < 29 weeks admitted to level III NICU. We implemented a QI bundle focusing on the first 72 h from birth which included delayed cord clamping, avoidance of routine echocardiography, the addition of clinical criteria to the definition of hypotension, factoring iatrogenic causes of hypotension, and standardization of respiratory management. The rate of inotropes use was compared before and after implementing the care bundle. Incidence of cystic periventricular leukomalacia (cPVL) was used as a balancing measure.

Results

QI bundle implementation was associated with significant reduction in overall use of inotropes (24 vs 7%, p < 0.001), dopamine (18 vs 5%, p < 0.001), and dobutamine (17 vs 4%, p < 0.001). Rate of acute brain injury decreased significantly: acute brain injury of any grade (34 vs 20%, p < 0.001) and severe brain injury (15 vs 6%, p < 0.001). There was no difference in the incidence of cPVL (0.8 vs 1.4%, p = 0.66). Associations remained significant after adjusting for confounding factors.

Conclusions

A quality improvement bundled approach resulted in a reduction in inotropes use and associated brain morbidities in premature babies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barrington KJ, Janaillac M. Treating hypotension in extremely preterm infants. The pressure is mounting. London: BMJ Publishing Group; 2016.

    Book  Google Scholar 

  2. Batton B, Li L, Newman NS, Das A, Watterberg KL, Yoder BA, et al. Use of antihypotensive therapies in extremely preterm infants. Pediatrics. 2013;131(6):e1865–73.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Short BL, Van Meurs K, Evans JR. Summary proceedings from the cardiology group on cardiovascular instability in preterm infants. Pediatrics. 2006;117(Supplement 1):S34–9.

    Article  PubMed  Google Scholar 

  4. El-Khuffash A, McNamara PJ. Hemodynamic assessment and monitoring of premature infants. Clin Perinatol. 2017;44(2):377–93.

    Article  PubMed  Google Scholar 

  5. Durrmeyer X, Marchand-Martin L, Porcher R, Gascoin G, Roze J-C, Storme L, et al. Abstention or intervention for isolated hypotension in the first 3 days of life in extremely preterm infants: association with short-term outcomes in the EPIPAGE 2 cohort study. Arch Dis Child-Fetal Neonatal Ed. 2017;102(6):490–6.

    Article  PubMed  Google Scholar 

  6. Batton B, Li L, Newman NS, Das A, Watterberg KL, Yoder BA, et al. Evolving blood pressure dynamics for extremely preterm infants. J Perinatol. 2014;34(4):301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Batton B, Li L, Newman NS, Das A, Watterberg KL, Yoder BA, et al. Early blood pressure, antihypotensive therapy and outcomes at 18–22 months’ corrected age in extremely preterm infants. Arch Dis Child-Fetal Neonatal Ed. 2016;101(3):F201–6.

    Article  PubMed  Google Scholar 

  8. Osborn DA, Paradisis M, Evans N. The effect of inotropes on morbidity and mortality in preterm infants with low systemic or organ blood flow. Cochrane Database Syst Rev. 2007;(1):CD005090.

  9. Dionne JM, Bremner SA, Baygani SK, Batton B, Ergenekon E, Bhatt-Mehta V, et al. Method of blood pressure measurement in neonates and infants: a systematic review and analysis. J Pediatr. 2020;221:23–31.

    Article  PubMed  Google Scholar 

  10. Groves AM, Kuschel CA, Knight DB, Skinner JR. Echocardiographic assessment of blood flow volume in the superior vena cava and descending aorta in the newborn infant. Arch Dis Child-Fetal Neonatal Ed. 2008;93(1):F24–8.

    Article  CAS  PubMed  Google Scholar 

  11. Bonestroo HJ, Lemmers PM, Baerts W, van Bel F. Effect of antihypotensive treatment on cerebral oxygenation of preterm infants without PDA. Pediatrics. 2011;128(6):e1502–10.

    Article  PubMed  Google Scholar 

  12. Fanaroff JM, Wilson-Costello DE, Newman NS, Montpetite MM, Fanaroff AA. Treated hypotension is associated with neonatal morbidity and hearing loss in extremely low birth weight infants. Pediatrics. 2006;117(4):1131–5.

    Article  PubMed  Google Scholar 

  13. Synnes AR, Chien L-Y, Peliowski A, Baboolal R, Lee SK. Variations in intraventricular hemorrhage incidence rates among Canadian neonatal intensive care units. J Pediatr. 2001;138(4):525–31.

    Article  CAS  PubMed  Google Scholar 

  14. Peter DS, Gandy C, Hoffman SB. Hypotension and adverse outcomes in prematurity: comparing definitions. Neonatology. 2017;111(3):228–33.

    Article  Google Scholar 

  15. Gogcu S, Washburn L, O’Shea TM. Treatment for hypotension in the first 24 postnatal hours and the risk of hearing loss among extremely low birth weight infants. J Perinatol. 2020;40(5):774–80.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fanaroff AA, Fanaroff JM. Short-and long-term consequences of hypotension in ELBW infants. In: Seminars in perinatology. Amsterdam: Elsevier; 2006. p. 151–5.

    Google Scholar 

  17. Pellicer A, del Carmen BM, Madero R, Salas S, Quero J, Cabañas F. Early systemic hypotension and vasopressor support in low birth weight infants: impact on neurodevelopment. Pediatrics. 2009;123(5):1369–76.

    Article  PubMed  Google Scholar 

  18. Bakshi S, Koerner T, Knee A, Singh R, Vaidya R. Effect of fluid bolus on clinical outcomes in very low birth weight infants. J Pediatr Pharmacol Ther. 2020;25(5):437–44.

    PubMed  PubMed Central  Google Scholar 

  19. Alderliesten T, Lemmers PMA, van Haastert IC, de Vries LS, Bonestroo HJC, Baerts W, et al. Hypotension in preterm neonates: low blood pressure alone does not affect neurodevelopmental outcome. J Pediatr. 2014;164(5):986–91.

    Article  PubMed  Google Scholar 

  20. Logan JW, O’Shea TM, Allred EN, Laughon MM, Bose CL, Dammann O, et al. Early postnatal hypotension is not associated with indicators of white matter damage or cerebral palsy in extremely low gestational age newborns. J Perinatol. 2011;31(8):524–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Subhedar NV, Shaw NJ. Dopamine versus dobutamine for hypotensive preterm infants. Cochrane Database Syst Rev. 2003;(3):CD001242.

  22. Ogrinc G, Davies L, Goodman D, Batalden P, Davidoff F, Stevens D. SQUIRE 2.0 (Standards for QUality Improvement Reporting Excellence): revised publication guidelines from a detailed consensus process. BMJ Qual Saf. 2016;25(12):986–92.

    Article  PubMed  Google Scholar 

  23. Papile L-A, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92(4):529–34.

    Article  CAS  PubMed  Google Scholar 

  24. Antes S, Welsch M, Kiefer M, Gläser M, Körner H, Eymann R. The frontal and temporal horn ratio to assess dimension of paediatric hydrocephalus: a comparative volumetric study. In: Brain edema XV. Berlin: Springer; 2013. p. 211–4.

    Chapter  Google Scholar 

  25. Brouwer MJ, De Vries LS, Pistorius L, Rademaker KJ, Groenendaal F, Benders MJ. Ultrasound measurements of the lateral ventricles in neonates: why, how and when? A systematic review. Acta Paediatr. 2010;99(9):1298–306.

    Article  PubMed  Google Scholar 

  26. Levene MI. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch Dis Child. 1981;56(12):900–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zubrow AB, Hulman S, Kushner H, Falkner B. Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicenter study. Philadelphia Neonatal Blood Pressure Study Group. J Perinatol. 1995;15(6):470–9.

    CAS  PubMed  Google Scholar 

  28. Mohammad K, Scott JN, Leijser LM, Zein H, Afifi J, Piedboeuf B, et al. Consensus approach for standardizing the screening and classification of preterm brain injury diagnosed with cranial ultrasound: a Canadian perspective. Front Pediatr. 2021;9:618236.

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Vries LS, Eken P, Dubowitz LM. The spectrum of leukomalacia using cranial ultrasound. Behav Brain Res. 1992;49(1):1–6.

    Article  PubMed  Google Scholar 

  30. Inder TE, Perlman JM, Volpe JJ. Preterm intraventricular hemorrhage/posthemorrhagic hydrocephalus. In: Volpe’s neurology of the newborn. Amsterdam: Elsevier; 2018. p. 637–98.

    Chapter  Google Scholar 

  31. Leijser LM, Scott JN, Roychoudhury S, Zein H, Murthy P, Thomas SP, et al. Post-hemorrhagic ventricular dilatation: inter-observer reliability of ventricular size measurements in extremely preterm infants. Pediatr Res. 2021;90(2):403–10.

  32. Fenton TR, Nasser R, Eliasziw M, Kim JH, Bilan D, Sauve R. Validating the weight gain of preterm infants between the reference growth curve of the fetus and the term infant. BMC Pediatr. 2013;13(1):1–10.

    Article  Google Scholar 

  33. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, te Pas A, et al. European consensus guidelines on the management of respiratory distress syndrome—2019 update. Neonatology. 2019;115(4):432–50.

    Article  PubMed  Google Scholar 

  34. Ng EH, Shah V. Guidelines for surfactant replacement therapy in neonates. Paediatr Child Health. 2021;26(1):35–41.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Murthy P, Zein H, Thomas S, Scott JN, Abou Mehrem A, Esser MJ, et al. Neuroprotection care bundle implementation to decrease acute brain injury in preterm infants. Pediatr Neurol. 2020;110:42–8.

    Article  PubMed  Google Scholar 

  36. Abdul Aziz AN, Thomas S, Murthy P, Rabi Y, Soraisham A, Stritzke A, et al. Early inotropes use is associated with higher risk of death and/or severe brain injury in extremely premature infants. J Matern Fetal Neonatal Med. 2020;33(16):2751–8.

    Article  PubMed  Google Scholar 

  37. Meyers JM, Tulloch J, Brown K, Caserta MT, D’Angio CT, GOLISANO CHILDREN’S HOSPITAL NICU ANTIBIOTIC STEWARDSHIP TEAM. A Quality Improvement Initiative To Optimize Antibiotic Use in a Level 4 NICU. Pediatrics. 2020;146(5):e20193956.

  38. Pollack LA, Srinivasan A. Core elements of hospital antibiotic stewardship programs from the Centers for Disease Control and Prevention. Clin Infect Dis. 2014;59(suppl_3):S97-100.

    Article  CAS  PubMed  Google Scholar 

  39. Ware JL, Schetzina KE, Morad A, Barker B, Scott TA, Grubb PH. A statewide quality improvement collaborative to increase breastfeeding rates in Tennessee. Breastfeed Med. 2018;13(4):292–300.

    Article  PubMed  Google Scholar 

  40. Walsh MC, Crowley M, Wexelblatt S, Ford S, Kuhnell P, Kaplan HC, et al. Ohio perinatal quality collaborative improves care of neonatal narcotic abstinence syndrome. Pediatrics. 2018;141(4):e20170900.

  41. Stevens TP, Shields E, Campbell D, Combs A, Horgan M, La Gamma EF, et al. Statewide initiative to reduce postnatal growth restriction among infants < 31 weeks of gestation. J Pediatr. 2018;197:82–9.

    Article  PubMed  Google Scholar 

  42. Lee SK, Aziz K, Singhal N, Cronin CM, James A, Lee DS, et al. Improving the quality of care for infants: a cluster randomized controlled trial. CMAJ. 2009;181(8):469–76.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Alemi F, Moore S, Headrick L, Neuhauser D, Hekelman F, Kizys N. Rapid improvement teams. Jt Commun J Qual Improv. 1998;24(3):119–29.

    CAS  Google Scholar 

  44. Plsek PE. Quality improvement methods in clinical medicine. Pediatrics. 1999;103(Supplement E1):203–14.

    Article  CAS  PubMed  Google Scholar 

  45. Altimier L, Phillips R. The neonatal integrative developmental care model: advanced clinical applications of the seven core measures for neuroprotective family-centered developmental care. Newborn Infant Nurs Rev. 2016;16(4):230–44.

    Article  Google Scholar 

  46. Dipak NK, Nanavati RN, Kabra NK, Srinivasan A, Ananthan A. Effect of delayed cord clamping on hematocrit, and thermal and hemodynamic stability in preterm neonates: a randomized controlled trial. Indian Pediatr. 2017;54(2):112–5.

    Article  PubMed  Google Scholar 

  47. Sommers R, Stonestreet BS, Oh W, Laptook A, Yanowitz TD, Raker C, et al. Hemodynamic effects of delayed cord clamping in premature infants. Pediatrics. 2012;129(3):e667–72.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lodha A, Shah PS, Soraisham AS, Rabi Y, Abou Mehrem A, Singhal N, et al. Association of deferred vs immediate cord clamping with severe neurological injury and survival in extremely low-gestational-age neonates. JAMA Netw Open. 2019;2(3):e191286–e191286.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Straňák Z, Feyereislová S, Korček P, Dempsey E. Placental transfusion and cardiovascular instability in the preterm infant. Front Pediatr. 2018;6:39.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yigit B, Tutsak E, Yıldırım C, Hutchon D, Pekkan K. Transitional fetal hemodynamics and gas exchange in premature postpartum adaptation: immediate vs. delayed cord clamping. Matern Health Neonatol Perinatol. 2019;5(1):1–11.

    Article  Google Scholar 

  51. American College of Obstetricians and Gynecologists Committee on Obstetric Practice. Delayed umbilical cord clamping after birth: ACOG Committee opinion, number 814. Obstet Gynecol. 2020;136(6):e100–6.

    Article  Google Scholar 

  52. Rimensberger PC, Cox PN, Frndova H, Bryan AC. The open lung during small tidal volume ventilation: concepts of recruitment and" optimal" positive end-expiratory pressure. Crit Care Med. 1999;27(9):1946–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The "Drive to Zero" IVH prevention project is a nationwide initiative funded by the Canadian Neonatal Network and Canadian Preterm Birth Network. The Neonatal Neuro-Critical Care program is funded and supported by the Alberta Children's Hospital Research Foundation and Alberta Health Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khorshid Mohammad.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Sujith Kumar Reddy Gurram Venkata, Ankur Srivastava, Prashanth Murthy, James N. Scott, Hussein Zein, Lara Leijser, Anirban Ghosh, Sarfaraz Momin, Sumesh Thomas, and Khorshid Mohammad declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

The University of Calgary Conjoint Health Research Ethics Board approved the QI project and waved the need for parental consent (REB14-1466).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Author contributions

Substantial contributions to conception and design, acquisition of data: KM. Analysis and interpretation of data, drafting the article: SKRGV, KM, AS. Developing and implementing the bundle: KM, PM, ST, HZ, LL. Cranial ultrasounds classification: JNS. Drafting the article or revising it critically for important intellectual content: All authors. Final approval of the version to be published: All authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1303 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurram Venkata, S.K.R., Srivastava, A., Murthy, P. et al. Hemodynamic Quality Improvement Bundle to Reduce the Use of Inotropes in Extreme Preterm Neonates. Pediatr Drugs 24, 259–267 (2022). https://doi.org/10.1007/s40272-022-00502-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-022-00502-5

Navigation