Skip to main content
Log in

Milestones of Precision Medicine: An Innovative, Multidisciplinary Overview

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Although the concept of precision medicine, in which healthcare is tailored to the molecular and clinical characteristics of each individual, is not new, its implementation in clinical practice has been heterogenous. In some medical specialties, precision medicine has gone from being just a promise to a reality that achieves better patient outcomes. This is a fact if we consider, for example, the great advances made in the genetic diagnosis and subsequent treatment of countless hereditary diseases, such as cystic fibrosis, which have improved the life expectancy of many of the affected children. In the field of oncology, the development of targeted therapies has prolonged the survival of patients with breast, lung, colorectal, melanoma, and hematological malignancies. In other disciplines, clinical milestones are perhaps less well known, but no less important. The current challenge is to expand and generalize the use of technologies that are central to precision medicine, such as massively parallel sequencing, to improve the management (prevention and treatment) of complex conditions such as cardiovascular, kidney, or autoimmune diseases. This process requires investment in specialized expertise, multidisciplinary collaboration, and the nationwide organization of genetic laboratories for diagnosis of specific diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De Grandis G, Halgunset V. Conceptual and terminological confusion around personalised medicine: a coping strategy. BMC Med Ethics. 2016;17:43.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ciardiello F, Arnold D, Casali PG, Cervantes A, Douillard J-Y, Eggermont A, et al. Delivering precision medicine in oncology today and in future—the promise and challenges of personalised cancer medicine: a position paper by the European Society for Medical Oncology (ESMO). Ann Oncol. 2014;25:1673–8.

    Article  CAS  PubMed  Google Scholar 

  3. Burnette R, Simmons LA, Snyderman R. Personalized health care as a pathway for the adoption of genomic medicine. J Pers Med. 2012;2:232–40.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scott RH, Fowler TA, Caulfield M. Genomic medicine: time for health-care transformation. Lancet. 2019;394:454–6.

    Article  PubMed  Google Scholar 

  5. Palau F. Pediatric genomics and precision medicine in childhood. In: Faintuch J, editor. Faintuch practitioners and providers SBT-PM for I. Cambridge: Academic Press; 2020. p. 143–52.

    Google Scholar 

  6. Rodríguez-Antona C, Taron M. Pharmacogenomic biomarkers for personalized cancer treatment. J Intern Med. 2015;277:201–17.

    Article  PubMed  CAS  Google Scholar 

  7. Garrido P, Aldaz A, Vera R, Calleja MA, de Álava E, Martín M, et al. Proposal for the creation of a national strategy for precision medicine in cancer: a position statement of SEOM, SEAP, and SEFH. Clin Transl Oncol. 2018;20:443–7.

    Article  CAS  PubMed  Google Scholar 

  8. Sarhene M, Wang Y, Wei J, Huang Y, Li M, Li L, et al. Biomarkers in heart failure: the past, current and future. Heart Fail Rev. 2019;24:867–903.

    Article  PubMed  Google Scholar 

  9. Stephens MC, Boardman LA, Lazaridis KN. Individualized medicine in gastroenterology and hepatology. Mayo Clin Proc. 2017;92:810–25.

    Article  PubMed  Google Scholar 

  10. Abbasi J. Getting pharmacogenomics into the clinic. JAMA. 2016;316:1533–5.

    Article  PubMed  Google Scholar 

  11. Plant D, Barton A. Adding value to real-world data: the role of biomarkers. Rheumatology. 2019;59:31–8.

    Article  PubMed Central  CAS  Google Scholar 

  12. Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013;15:258–67.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pritchard DE, Moeckel F, Villa MS, Housman LT, McCarty CA, McLeod HL. Strategies for integrating personalized medicine into healthcare practice. Per Med. 2017;14:141–52.

    Article  CAS  PubMed  Google Scholar 

  14. Cameron D, Piccart-Gebhart MJ, Gelber RD, Procter M, Goldhirsch A, de Azambuja E, et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin adjuvant (HERA) trial. Lancet. 2017;389:1195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burgener EB, Moss RB. Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis. Curr Opin Pediatr. 2018;30:372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hess JF, Kohl TA, Kotrová M, Rönsch K, Paprotka T, Mohr V, et al. Library preparation for next generation sequencing: a review of automation strategies. Biotechnol Adv. 2020;41:107537.

    Article  CAS  PubMed  Google Scholar 

  17. Argente J, Pérez-Jurado LA. Genetic causes of proportionate short stature. Best Pract Res Clin Endocrinol Metab. 2018;32:499–522.

    Article  CAS  PubMed  Google Scholar 

  18. Backeljauw P. Therapy with recombinant human IGF-1 for children with primary insulin-like growth factor-I deficiency. Growth Horm IGF Res. 2020;51:22–6.

    Article  CAS  PubMed  Google Scholar 

  19. Pilling LC, Tamosauskaite J, Jones G, Wood AR, Jones L, Kuo C-L, et al. Common conditions associated with hereditary haemochromatosis genetic variants: cohort study in UK Biobank. BMJ. 2019;364:k5222–k5222.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang KH, Kupa J, Duffy KA, Kalish JM. Diagnosis and management of Beckwith-Wiedemann syndrome. Front Pediatr. 2020;7:562.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Di Donato I, Bianchi S, De Stefano N, Dichgans M, Dotti MT, Duering M, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. BMC Med. 2017;15:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Brandt DS, Shinkunas L, Hillis SL, Daack-Hirsch SE, Driessnack M, Downing NR, et al. A closer look at the recommended criteria for disclosing genetic results: perspectives of medical genetic specialists, genomic researchers, and institutional review board chairs. J Genet Couns. 2013;22:544–53.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Amaral MD. Novel personalized therapies for cystic fibrosis: treating the basic defect in all patients. J Intern Med Engl. 2015;277:155–66.

    Article  CAS  Google Scholar 

  24. Granell S, Serra-Juhé C, Martos-Moreno GÁ, Díaz F, Pérez-Jurado LA, Baldini G, et al. A novel melanocortin-4 receptor mutation MC4R-P272L associated with severe obesity has increased propensity to be ubiquitinated in the ER in the face of correct folding. PLoS ONE. 2012;7:e50894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fairbrother U, Kidd E, Malagamuwa T, Walley A. Genetics of severe obesity. Curr Diab Rep. 2018;18:85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wabitsch M, Funcke J-B, Lennerz B, Kuhnle-Krahl U, Lahr G, Debatin K-M, et al. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med. 2014;372:48–54.

    Article  CAS  Google Scholar 

  27. Clément K, van den Akker E, Argente J, Bahm A, Chung WK, Connors H, et al. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol. 2020;8:960–70.

    Article  PubMed  Google Scholar 

  28. Haws R, Brady S, Davis E, Fletty K, Yuan G, Gordon G, et al. Effect of setmelanotide, a melanocortin-4 receptor agonist, on obesity in Bardet-Biedl syndrome. Diabetes Obes Metab. 2020;22:2133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Afghahi A, Sledge GWJ. Targeted therapy for cancer in the genomic era. Cancer J. 2015;21(4):294–8.

    Article  CAS  PubMed  Google Scholar 

  30. Douillard J-Y, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab–FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34.

    Article  CAS  PubMed  Google Scholar 

  31. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E–mutated colorectal cancer. N Engl J Med. 2019;381:1632–43.

    Article  CAS  PubMed  Google Scholar 

  32. Andre T, Shiu K-K, Kim TW, Jensen BV, Jensen LH, Punt CJA, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: the phase 3 KEYNOTE-177 study. J Clin Oncol. 2020;38:LBA4.

    Article  Google Scholar 

  33. Soria J-C, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. N Engl J Med. 2017;378:113–25.

    Article  PubMed  Google Scholar 

  34. Addeo A, Tabbò F, Robinson T, Buffoni L, Novello S. Precision medicine in ALK rearranged NSCLC: a rapidly evolving scenario. Crit Rev Oncol Hematol. 2018;122:150–6.

    Article  PubMed  Google Scholar 

  35. Drilon A, Clark JW, Weiss J, Ou S-HI, Camidge DR, Solomon BJ, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26:47–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaw AT, Ou S-HI, Bang Y-J, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non–small-cell lung cancer. N Engl J Med. 2014;371:1963–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  38. Mass RD, Press MF, Anderson S, Cobleigh MA, Vogel CL, Dybdal N, et al. Evaluation of clinical outcomes according to HER2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab. Clin Breast Cancer. 2005;6:240–6.

    Article  PubMed  Google Scholar 

  39. Bang Y-J, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  40. Kell MR, Burke JP. Management of breast cancer in women with BRCA gene mutation. BMJ. 2007;334:437–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380:1929–40.

    Article  PubMed  Google Scholar 

  42. Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA Approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019;25:3753–8.

    Article  CAS  PubMed  Google Scholar 

  43. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378:731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Subbiah V, Solit DB, Chan TA, Kurzrock R. The FDA approval of pembrolizumab for adult and pediatric patients with tumor mutational burden (TMB) ≥ 10: a decision centered on empowering patients and their physicians. Ann Oncol. 2020;31:1115–8.

    Article  CAS  PubMed  Google Scholar 

  45. Birkenkamp-Demtröder K, Christensen E, Nordentoft I, Knudsen M, Taber A, Høyer S, et al. Monitoring treatment response and metastatic relapse in advanced bladder cancer by liquid biopsy analysis. Eur Urol. 2018;73:535–40.

    Article  PubMed  Google Scholar 

  46. Normanno N, Cervantes A, Ciardiello F, De Luca A, Pinto C. The liquid biopsy in the management of colorectal cancer patients: current applications and future scenarios. Cancer Treat Rev. 2018;70:1–8.

    Article  CAS  PubMed  Google Scholar 

  47. Kilgour E, Rothwell DG, Brady G, Dive C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell. 2020;37:485–95.

    Article  CAS  PubMed  Google Scholar 

  48. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gray PN, Vuong H, Tsai P, Lu H-M, Mu W, Hsuan V, et al. TumorNext: a comprehensive tumor profiling assay that incorporates high resolution copy number analysis and germline status to improve testing accuracy. Oncotarget. 2016;7:68206–28.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Remon J, Swalduz A, Planchard D, Ortiz-Cuaran S, Mezquita L, Lacroix L, et al. Outcomes in oncogenic-addicted advanced NSCLC patients with actionable mutations identified by liquid biopsy genomic profiling using a tagged amplicon-based NGS assay. PLoS ONE. 2020;15:e0234302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Steeghs EMP, Kroeze LI, Tops BBJ, van Kempen LC, ter Elst A, Kastner-van Raaij AWM, et al. Comprehensive routine diagnostic screening to identify predictive mutations, gene amplifications, and microsatellite instability in FFPE tumor material. BMC Cancer. 2020;20:291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Serratì S, De Summa S, Pilato B, Petriella D, Lacalamita R, Tommasi S, et al. Next-generation sequencing: advances and applications in cancer diagnosis. Onco Targets Ther. 2016;9:7355–65.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tan O, Shrestha R, Cunich M, Schofield DJ. Application of next-generation sequencing to improve cancer management: a review of the clinical effectiveness and cost-effectiveness. Clin Genet. 2018;93:533–44.

    Article  CAS  PubMed  Google Scholar 

  54. Sunami K, Ichikawa H, Kubo T, Kato M, Fujiwara Y, Shimomura A, et al. Feasibility and utility of a panel testing for 114 cancer-associated genes in a clinical setting: a hospital-based study. Cancer Sci. 2019;110:1480–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020;31:1491–505.

    Article  CAS  PubMed  Google Scholar 

  56. Abrams J, Conley B, Mooney M, Zwiebel J, Chen A, Welch JJ, et al. National Cancer Institute’s precision medicine initiatives for the new national clinical trials network. Am Soc Clin Oncol Educ Book. 2014;71–6.

  57. FGM 2025 Workflow Study Group (Alliance nationale des Sciences de la Vie et de la Santé), Auzanneau C, Bacq D, Bellera C, Blons H, Boland A, et al. Feasibility of high-throughput sequencing in clinical routine cancer care: lessons from the cancer pilot project of the France Genomic Medicine 2025 plan. ESMO Open. 2020;5:e000744.

    Article  Google Scholar 

  58. Ansotegui IJ, Melioli G, Canonica GW, Gómez RM, Jensen-Jarolim E, Ebisawa M, et al. A WAO—ARIA—GA2LEN consensus document on molecular-based allergy diagnosis (PAMD@): Update 2020. World Allergy Organ J. 2020;13:100091.

    Article  CAS  Google Scholar 

  59. Luengo O, Cardona V. Component resolved diagnosis: when should it be used? Clin Transl Allergy. 2014;4:28.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mersha TB, Afanador Y, Johansson E, Proper SP, Bernstein JA, Rothenberg ME, et al. Resolving clinical phenotypes into endotypes in allergy: molecular and omics approaches. Clin Rev Allergy Immunol. 2021;60:200–19.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Muraro A, Lemanske RF, Hellings PW, Akdis CA, Bieber T, Casale TB, et al. Precision medicine in patients with allergic diseases: airway diseases and atopic dermatitis—PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immuno. 2016;137:1347–58.

    Article  Google Scholar 

  62. Richards LB, Neerincx AH, van Bragt JJMH, Sterk PJ, Bel EHD, Maitland-van der Zee AH. Biomarkers and asthma management: analysis and potential applications. Curr Opin Allergy Clin Immunol. 2018;18

  63. Matsumoto H. Roles of periostin in asthma. Adv Exp Med Biol. 2019;1132:145–59.

    Article  CAS  PubMed  Google Scholar 

  64. Gupta J, Johansson E, Bernstein JA, Chakraborty R, Khurana Hershey GK, Rothenberg ME, et al. Resolving the etiology of atopic disorders by using genetic analysis of racial ancestry. J Allergy Clin Immunol. 2016;138:676–99.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363:1211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Almoguera B, Vazquez L, Mentch F, Connolly J, Pacheco JA, Sundaresan AS, et al. Identification of four novel loci in asthma in European American and African American populations. Am J Respir Crit Care Med. 2017;195:456–63.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet. 2011;43:887–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Andiappan AK, Sio YY, Lee B, Suri BK, Matta SA, Lum J, et al. Functional variants of 17q12-21 are associated with allergic asthma but not allergic rhinitis. J Allergy Clin Immunol. 2016;137:758-766.e3.

    Article  CAS  PubMed  Google Scholar 

  69. Brown SJ. Molecular mechanisms in atopic eczema: insights gained from genetic studies. J Pathol. 2017;241:140–5.

    Article  CAS  PubMed  Google Scholar 

  70. Ghosh D, Bernstein JA, Khurana Hershey GK, Rothenberg ME, Mersha TB. Leveraging multilayered “omics” data for atopic dermatitis: a road map to precision medicine. Front Immunol. 2018;9:2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bularga A, Lee KK, Stewart S, Ferry AV, Chapman AR, Marshall L, et al. High-sensitivity troponin and the application of risk stratification thresholds in patients with suspected acute coronary syndrome. Circulation. 2019;140:1557–68.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vaduganathan M, Claggett B, Packer M, McMurray JJV, Rouleau JL, Zile MR, et al. natriuretic peptides as biomarkers of treatment response in clinical trials of heart failure. JACC Hear Fail. 2018;6:564–9.

    Article  Google Scholar 

  73. Jesus CJ, Mikael AF, Achim O, Anders G, Tomas J. hsCRP level and the risk of death or recurrent cardiovascular events in patients with myocardial infarction: a healthcare-based study. J Am Heart Assoc. 2019;8:12638.

    Google Scholar 

  74. Reza N, Musunuru K, Owens AT. From hypertrophy to heart failure: what is new in genetic cardiomyopathies. Curr Heart Fail Rep. 2019;16:157–67.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Arbustini E, Pasotti M, Pilotto A, Pellegrini C, Grasso M, Previtali S, et al. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail. 2006;8:477–83.

    Article  CAS  PubMed  Google Scholar 

  76. Domínguez F, Cuenca S, Bilińska Z, Toro R, Villard E, Barriales-Villa R, et al. Dilated cardiomyopathy due to BLC2-associated athanogene 3 (BAG3) mutations. J Am Coll Cardiol. 2018;72:2471–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O’Donoghue A, et al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995;332:1058–65.

    Article  CAS  PubMed  Google Scholar 

  78. Kenichiro Y, Minoru H, Takeshi A, Satoshi O, Yoshifusa A, Tohru O, et al. Genotype-phenotype correlation of SCN5A mutation for the clinical and electrocardiographic characteristics of probands with brugada syndrome. Circulation. 2017;135:2255–70.

    Article  CAS  Google Scholar 

  79. Ferhaan A, McNally EM, Ackerman MJ, Baty LC, Day SM, Kullo IJ, et al. Establishment of specialized clinical cardiovascular genetics programs: recognizing the need and meeting standards: a scientific statement from the American Heart Association. Circ Genomic Precis Med. 2019;12:e000054.

    Article  Google Scholar 

  80. Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly H, et al. Diagnostic utility of exome sequencing for kidney disease. N Engl J Med. 2019;380:142–51.

    Article  CAS  PubMed  Google Scholar 

  81. Corradi V, Gastaldon F, Caprara C, Giuliani A, Martino F, Ferrari F, et al. Predictors of rapid disease progression in autosomal dominant polycystic kidney disease. Minerva Med. 2017;108:43–56.

    Article  PubMed  Google Scholar 

  82. Torra R, Furlano M. New therapeutic options for Alport syndrome. Nephrol Dial Transplant. 2019;34:1272–9.

    Article  CAS  PubMed  Google Scholar 

  83. Ortiz A, Germain DP, Desnick RJ, Politei J, Mauer M, Burlina A, et al. Fabry disease revisited: management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123:416–27.

    Article  CAS  PubMed  Google Scholar 

  84. Provenzano M, Rotundo S, Chiodini P, Gagliardi I, Michael A, Angotti E, et al. Contribution of predictive and prognostic biomarkers to clinical research on chronic kidney disease. Int J Mol Sci. 2020;21:5846.

    Article  CAS  PubMed Central  Google Scholar 

  85. Ortiz A. Proteomics for clinical assessment of kidney disease. Proteom Clin Appl. 2019;13:1900004.

    Article  CAS  Google Scholar 

  86. Martin-Lorenzo M, Gonzalez-Calero L, Zubiri I, Diaz-Payno PJ, Sanz-Maroto A, Posada-Ayala M, et al. Urine 2DE proteome analysis in healthy condition and kidney disease. Electrophoresis. 2014;35:2634–41.

    Article  CAS  PubMed  Google Scholar 

  87. Siwy J, Schanstra JP, Argiles A, Bakker SJL, Beige J, Boucek P, et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transplant. 2014;29:1563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rodríguez-Ortiz ME, Pontillo C, Rodríguez M, Zürbig P, Mischak H, Ortiz A. Novel urinary biomarkers for improved prediction of progressive eGFR loss in early chronic kidney disease stages and in high risk individuals without chronic kidney disease. Sci Rep. 2018;8:15940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Sanchez-Niño MD, Sanz AB, Ramos AM, Fernandez-Fernandez B, Ortiz A. Clinical proteomics in kidney disease as an exponential technology: heading towards the disruptive phase. Clin Kidney J. 2017;10:188–91.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stachler MD, Camarda ND, Deitrick C, Kim A, Agoston AT, Odze RD, et al. Detection of mutations in barrett’s esophagus before progression to high-grade dysplasia or adenocarcinoma. Gastroenterology. 2018;155:156–67.

    Article  CAS  PubMed  Google Scholar 

  91. Snyder P, Dunbar K, Cipher DJ, Souza RF, Spechler SJ, Konda VJA. Aberrant p53 immunostaining in barrett’s esophagus predicts neoplastic progression: systematic review and meta-analyses. Dig Dis Sci. 2019;64:1089–97.

    Article  CAS  PubMed  Google Scholar 

  92. Yuan H-L, Wang T, Zhang K-H. MicroRNAs as potential biomarkers for diagnosis, therapy and prognosis of gastric cancer. Onco Targets Ther. 2018;11:3891–900.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Drescher H, Weiskirchen S, Weiskirchen R. Current status in testing for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Cells. 2019;8:845.

    Article  CAS  PubMed Central  Google Scholar 

  94. Winner M, Sethi A, Poneros JM, Stavropoulos SN, Francisco P, Lightdale CJ, et al. The role of molecular analysis in the diagnosis and surveillance of pancreatic cystic neoplasms. JOP. 2015;16:143–9.

    PubMed  Google Scholar 

  95. Zhu S, Wang B, Jia Q, Duan L. Candidate single nucleotide polymorphisms of irritable bowel syndrome: a systemic review and meta-analysis. BMC Gastroenterol. 2019;19:165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Garcia-Etxebarria K, Zheng T, Bonfiglio F, Bujanda L, Dlugosz A, Lindberg G, et al. Increased prevalence of rare sucrase-isomaltase pathogenic variants in irritable bowel syndrome patients. Clin Gastroenterol Hepatol. 2018;16:1673–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Henström M, Diekmann L, Bonfiglio F, Hadizadeh F, Kuech E-M, von Köckritz-Blickwede M, et al. Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome. Gut. 2018;67:263–70.

    Article  PubMed  CAS  Google Scholar 

  98. Piccini B, Vascotto M, Serracca L, Luddi A, Margollicci MA, Balestri P, et al. HLA-DQ typing in the diagnostic algorithm of celiac disease. Rev Española Enfermedades Dig. 2012;104:248–54.

    Article  CAS  Google Scholar 

  99. Sipponen T. Diagnostics and prognostics of inflammatory bowel disease with fecal neutrophil-derived biomarkers calprotectin and lactoferrin. Dig Dis. 2013;31:336–44.

    Article  PubMed  Google Scholar 

  100. Arneth BM. Neuronal antibodies and associated syndromes. Mageed R, editor. Autoimmune Dis. 2019;219:2135423.

    Google Scholar 

  101. Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 2019;16:272.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85:177–89.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Monstad SE, Knudsen A, Salvesen HB, Aarseth JH, Vedeler CA. Onconeural antibodies in sera from patients with various types of tumours. Cancer Immunol Immunother. 2009;58:1795–800.

    Article  CAS  PubMed  Google Scholar 

  104. Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15:391–404.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gresa-Arribas N, Titulaer MJ, Torrents A, Aguilar E, McCracken L, Leypoldt F, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol. 2014;13:167–77.

    Article  CAS  PubMed  Google Scholar 

  106. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018;14:577–89.

    Article  CAS  PubMed  Google Scholar 

  107. Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A, et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81:857–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huss A, Senel M, Abdelhak A, Mayer B, Kassubek J, Ludolph AC, et al. Longitudinal serum neurofilament levels of multiple sclerosis patients before and after treatment with first-line immunomodulatory therapies. Biomedicines. 2020;8:312.

    Article  CAS  PubMed Central  Google Scholar 

  109. Querol-Vilaseca M, Colom-Cadena M, Pegueroles J, San Martín-Paniello C, Clarimon J, Belbin O, et al. YKL-40 (Chitinase 3-like I) is expressed in a subset of astrocytes in Alzheimer’s disease and other tauopathies. J Neuroinflammation. 2017;14:118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Alcolea D, Vilaplana E, Suárez-Calvet M, Illán-Gala I, Blesa R, Clarimón J, et al. CSF sAPPβ, YKL-40, and neurofilament light in frontotemporal lobar degeneration. Neurology. 2017;89:178–88.

    Article  CAS  PubMed  Google Scholar 

  111. Cantó E, Tintoré M, Villar LM, Costa C, Nurtdinov R, Álvarez-Cermeño JC, et al. Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain. 2015;138:918–31.

    Article  PubMed  Google Scholar 

  112. Gaur N, Perner C, Witte OW, Grosskreutz J. The chitinases as biomarkers for amyotrophic lateral sclerosis: signals from the CNS and beyond. Front Neurol. 2020;11:377.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wahid B, Bashir H, Bilal M, Wahid K, Sumrin A. Developing a deeper insight into reproductive biomarkers. Clin Exp Reprod Med. 2017;44:159–70.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Qu T, Yan M, Shen W-J, Li L, Zhu P, Li Z, et al. Predictive serum markers for unexplained infertility in child-bearing aged women. Am J Reprod Immunol. 2020;83:13194.

    Article  Google Scholar 

  115. Pillai RN, Konje JC, Tincello DG, Potdar N. Role of serum biomarkers in the prediction of outcome in women with threatened miscarriage: a systematic review and diagnostic accuracy meta-analysis. Hum Reprod Update. 2015;22:228–39.

    PubMed  Google Scholar 

  116. Abbasihormozi SH, Babapour V, Kouhkan A, Niasari Naslji A, Afraz K, Zolfaghary Z, et al. Stress hormone and oxidative stress biomarkers link obesity and diabetes with reduced fertility potential. Cell J. 2019;21:307–13.

    PubMed  PubMed Central  Google Scholar 

  117. Hotaling JM, Laufer N, Rosenwaks Z. Introduction: cancer biomarkers and fertility. Fertil Steril. 2018;109:4–5.

    Article  PubMed  Google Scholar 

  118. Wang Y-X, Wu Y, Chen H-G, Duan P, Wang L, Shen H-Q, et al. Seminal plasma metabolome in relation to semen quality and urinary phthalate metabolites among Chinese adult men. Environ Int. 2019;129:354–63.

    Article  CAS  PubMed  Google Scholar 

  119. Huang Q, Liu L, Wu Y, Wang X, Luo L, Nan B, et al. Seminal plasma metabolites mediate the associations of multiple environmental pollutants with semen quality in Chinese men. Environ Int. 2019;132:105066.

    Article  CAS  PubMed  Google Scholar 

  120. Jirge PR. Ovarian reserve tests. J Hum Reprod Sci. 2011;4:108–13.

    Article  PubMed  PubMed Central  Google Scholar 

  121. La Marca A, Ferraretti AP, Palermo R, Ubaldi FM. The use of ovarian reserve markers in IVF clinical practice: a national consensus. Gynecol Endocrinol. 2016;32:1–5.

    Article  PubMed  Google Scholar 

  122. Kasmi IEL, Messaoudi S, Lesaint C, Bissonnette F, Kadoch I-J. Identification of new biomarkers of human endometrial receptivity and maternal-fetal dialogue. Fertil Steril. 2019;112:e334–5.

    Article  Google Scholar 

  123. Díaz-Gimeno P, Horcajadas JA, Martínez-Conejero JA, Esteban FJ, Alamá P, Pellicer A, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95:50-60.e15.

    Article  PubMed  CAS  Google Scholar 

  124. Enciso M, Carrascosa JP, Sarasa J, Martínez-Ortiz PA, Munné S, Horcajadas JA, et al. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis. Hum Reprod. 2018;33:220–8.

    Article  CAS  PubMed  Google Scholar 

  125. Rantapää-Dahlqvist S. Diagnostic and prognostic significance of autoantibodies in early rheumatoid arthritis. Scand J Rheumatol. 2005;34:83–96.

    Article  PubMed  Google Scholar 

  126. Bek S, Bojesen AB, Nielsen JV, Sode J, Bank S, Vogel U, et al. Systematic review and meta-analysis: pharmacogenetics of anti-TNF treatment response in rheumatoid arthritis. Pharmacogenomics J. 2017;17:403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Goulden B, Isenberg D. Anti-IFNαR mabs for the treatment of systemic lupus erythematosus. Expert Opin Biol Ther. 2021;21(4):519–28.

    Article  CAS  PubMed  Google Scholar 

  128. Williams AM, Liu Y, Regner KR, Jotterand F, Liu P, Liang M. Artificial intelligence, physiological genomics, and precision medicine. Physiol Genomics. 2018;50:237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Uttam S, Stern AM, Sevinsky CJ, Furman S, Pullara F, Spagnolo D, et al. Spatial domain analysis predicts risk of colorectal cancer recurrence and infers associated tumor microenvironment networks. Nat Commun. 2020;11:3515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ortiz C, Carlén M, Meletis K. Spatial transcriptomics: molecular maps of the mammalian brain. Annu Rev Neurosci. 2021;44:547–62.

    Article  CAS  PubMed  Google Scholar 

  131. Breiteneder H, Peng Y-Q, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy. 2020;75:3039–68.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Anabel Herrero, on behalf of Springer Healthcare Communications, for providing medical writing assistance for this manuscript. This medical writing assistance was funded by the Cátedra UAM–Merck in Molecular Individualized Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús García-Foncillas.

Ethics declarations

Funding

Professional medical writing was funded by the Cátedra UAM–Merck in Molecular Individualized Medicine.

Conflict of Interest

J.G.F discloses consulting/advisory/honoraria speaker roles with Abbott, Amgen, Astellas, Astra Zeneca, Biocartis, Boehringer Ingelheim, BMS, Bayer, Celgene, Eisai, Foundation Medicine, GSK, Hospira, Janssen, Lilly, Merck Serono, MSD, Novartis, Pharmamar, Pfizer, Roche, Sanofi, Servier, Sysmex, and Tesaro. J.A. has received research grants from the Spanish Ministry of Science and Innovation with the help of European FEDER funding (FIS PI19/00166), and the Network Center for Biomedical Research on Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III. A.O. is a consultant for Sanofi Genzyme and has received speaker fees or travel support from AstraZeneca, Amicus, Amgen, Fresenius Medical Care, Menarini, Kyowa Kirin, Alexion, Otsuka, and Vifor Fresenius Medical Care Renal Pharma, and is Director of the Cátedra Mundipharma–UAM of diabetic kidney disease. A.O. has also received research grants from FIS/Fondos FEDER (PI17/00257, PI18/01386, PI19/00588, PI19/00815, DTS18/00032), ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071), ISCIII-RETIC (REDinREN RD016/0009), Sociedad Española de Nefrología, FRIAT, Comunidad de Madrid en Biomedicina B2017/BMD-3686 CIFRA2-CM. V.C. reports personal fees from ALK, Allergy Therapeutics, LETI, Thermofisher, Merck, AstraZeneca, and GSK, outside the submitted work. B.C. declares that the Neuroimmunology Unit has received grants from: Biogen-Idec, Sanofi-Genzyme, Merck-Serono, Celgene-BMS, Almirall, Roche, and TEVA, and he has received consulting fees from Sanofi-Genzyme, Merck-Serono and Celgene-BMS. A.F.M. discloses consulting/advisory/speaker honoraria from Kyowa Kirin, Eisai, Servier, Amgen, Sanofi, Bayer, Lilly, BMS, Roche, and Merck. M.V.P.G. is a consultant for Sanofi Genzyme and has received speaker fees or travel support from AstraZeneca, Amicus, Amgen, Fresenius Medical Care, Menarini, Kyowa Kirin, Alexion, Otsuka, and Vifor Fresenius Medical Care Renal Pharma, and is Director of the Cátedra Mundipharma–UAM of diabetic kidney disease. She has also received research grants from FIS/Fondos FEDER (PI17/00257, PI18/01386, PI19/00588, PI19/00815, DTS18/00032), ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071), ISCIII-RETIC (REDinREN RD016/0009), Sociedad Española de Nefrología, FRIAT, Comunidad de Madrid en Biomedicina B2017/BMD-3686 CIFRA2-CM. L.B., J.A.H., and A.I have nothing to declare.

Availability of data and material (data transparency)

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Author contributions

All named authors meet the International Committee of Medical Journal Editors’ criteria for authorship for this article. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Foncillas, J., Argente, J., Bujanda, L. et al. Milestones of Precision Medicine: An Innovative, Multidisciplinary Overview. Mol Diagn Ther 25, 563–576 (2021). https://doi.org/10.1007/s40291-021-00544-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00544-4

Navigation