Skip to main content
Log in

Caesalpinia spinosa (Caesalpiniaceae) leaves: anatomy, histochemistry, and secondary metabolites

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Caesalpinia spinosa (Molina) Kuntze is an extensively used plant in the industry and folk medicine, and it is characterized by containing high quantities of tannins in its pods. Ultrastructure and chemical aspects of C. spinosa leaves were analyzed to identify their properties and the function of their specialized cells. Leaflets are amphistomatic with an internal bifacial structure. Subspherical idioblasts occur on the subepidermal area of leaflets and are immersed in the parenchymatous tissue of rachis and petiole. Histochemical analyses showed that tannins are widespread on the parenchymatous tissue of leaflets, rachis, and petioles, and subspherical idioblasts present a lipophilic nature containing essential oils and lipids. Glandular trichomes occurring on the rachis and petiole bear phenolic compounds. GC–MS analysis reveals the presence predominantly of monoterpenes in the leaf essential oil. The detected compounds may be related to the antimicrobial- and antioxidant activity of C. spinosa extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figs. 1–3
Figs. 4–6
Figs. 7–11
Fig. 12

Similar content being viewed by others

References

  • Adamczyk B, Salminen J-P, Smolander A, Kitunen V (2012) Precipitation of proteins by tannins: effects of concentration, protein/tannin ratio and pH. Int J Food Sci Technol 47:875–878

    Article  CAS  Google Scholar 

  • Andreucci AC, Ciccarelli D, Desideri I, Pagni AM (2008) Glandular hairs and secretory ducts of Matricaria chamomilla (Asteraceae): morphology and histochemistry. Ann Bot Fennici 45:11–18

  • Ascensão L, Mota L, Castro MM (1999) Glandular trichomes of the leaves and flowers of Plectranthus ornatus: morphology, distribution and histochemistry. Ann Bot 84:434–447

    Article  Google Scholar 

  • Bailey IW, Nast G (1943) The comparative morphology of the Winteraceae II. Carpels. J Arnold Arbor 24:472–484

    Google Scholar 

  • Baldim JL, de Carvalho JA, Salles P, dos Santos MH, Lago JHG, Sartorelli P, Viegas C Jr, Soares MG (2012) The genus Caesalpinia L. (Caesalpiniaceae): phytochemical and pharmacological characteristics. Molecules 17:7887–7902

    Article  Google Scholar 

  • Barbehenn RV, Constabel P (2011) Tannins in plant–herbivore interactions. Phytochemistry 72:1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Beckman CH, Mueller WC, McHardy WE (1972) The localization of stored phenols in plant hairs. Physiol Plant Pathol 2:69–74

    Article  CAS  Google Scholar 

  • Brako L, Zarucchi J (1993) Catalogue of the flowering plants and gymnosperms of Peru. Monogr Syst Bot Mo Bot Gard 45:1–1286

    Google Scholar 

  • Brillouet J-C, Romieu C, Schoefs B, Solymosi K, Cheynier V, Fulcrand H, Verdeil J-L, Conéjéro G (2013) The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann Bot 112:1003–1014

    Article  CAS  PubMed  Google Scholar 

  • Caissard J-C, Meekijjironenroj A, Baudino S, Anstett M-C (2004) Localization of production and emission of pollinator attractant on whole leaves of Chamaerops humilis (Arecaceae). Am J Bot 91:1190–1199

    Article  PubMed  Google Scholar 

  • Castañeda DM, Pombo LM, Urueña CP, Hernandez JF, Fiorentino S (2012) A gallotannin-rich fraction from Caesalpinia spinosa (Molina) Kuntze displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line. BMC Complement Altern Med 12:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Chanwitheesuk A, Teerawutgulrag A, Kilburn J, Rakariyatham N (2007) Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem 100:1044–1048

    Article  CAS  Google Scholar 

  • Ciccarelli D, Andreucci AC, Pagni AM (2001) Translucent glands and secretory canals in Hypericum perforatum L. (Hypericaceae): morphological, anatomical and histochemical studies during the course of ontogenesis. Ann Bot 88:637–644

    Article  Google Scholar 

  • Corte VB, Contin M, de Lima EE, Aparecida C, Pinho D (2009) Histochemical and ultrastructural study of Caesalpinia peltophoroides Benth. (Leguminosae–Caesalpinoideae) seeds. Rev Árvore 33:873–883

    Article  CAS  Google Scholar 

  • da Silva LB, Santos FAR, Gasson P, Cutler D (2009) Anatomia e densidade básica da madeira de Caesalpinia pyramidalis Tul. (Fabaceae), espécie endêmica da caatinga do Nordeste do Brasil. Acta Bot Bras 23:436–445

    Article  Google Scholar 

  • David R, Carde J-P (1964) Coloration différentielle des inclusions lipidiques et terpéniques des pseudophylles du Pin maritime au moyen du réactif nadi. C R Acad Sci Paris Ser D 258:1338–1340

    CAS  Google Scholar 

  • de la Cruz P (2004) Aprovechamiento integral y racional de la tara (Caesalpinia spinosaCaesalpinia tinctoria). Rev Inst Invest FIGMMG 7:64–73

    Google Scholar 

  • de Oliveira AB, de Mendoça MS, Azevedo AA, Meira RMSA (2012) Anatomy and histochemistry of the vegetative organs of Cissus verticillata—a native medicinal plant of the Brazilian Amazon. Braz J Pharmacogn 22:1201–1211

    Google Scholar 

  • Duke JA, Reed CF (1981) Caesalpinia spinosa (Mol.) Ktz. In: Duke JA (ed) Handbook of legumes of world economic importance. Plenum, New York, pp 32–33

    Chapter  Google Scholar 

  • Escobar LE, Chávez M (2008) Efecto in vitro de diferentes concentraciones de extracto alcohólico de Caesalpinia spinosa (Molina) Kuntze, sobre la viabilidad de Corynebacterium diphtheriae. Rev Méd Vallejiana 5:28–37

    Google Scholar 

  • Garro JM, Riedl B, Conner AH (1997) Analytical studies on tara tannins. Holzforschung 51:235–243

    Article  Google Scholar 

  • Gasson P, Warner K, Lewis G (2009) Wood anatomy of Caesalpinia s.s., Coulteria, Erythrostemon, Guilandina, Libidibia, Mezoneuron, Poincianella, Pomaria and Tara (Leguminosae, Caesalpinioideae, Caesalpinieae). IAWA J 30:247–276

    Article  Google Scholar 

  • Geissmann TA, Griffin TS (1971) Sesquiterpene lactones: acid-catalysed colour reactions as an aid in structure determination. Phytochemistry 10:2475–2485

    Article  Google Scholar 

  • Gibson AC (1996) Structure–function relations of warm desert plants. Springer, Berlin

    Book  Google Scholar 

  • Hagerman AE, Robbins CT (1987) Implications of soluble tannin–protein complexes for tannin analysis and plant defense mechanisms. J Chem Ecol 13:1243–1265

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1998) Phytochemical methods. A guide to modern techniques of plant analysis. Chapman and Hall, London

    Google Scholar 

  • Heil M (2008) Indirect defence-recent developments and open questions. Progr Bot 69:359–396

    Article  CAS  Google Scholar 

  • Huber DPW, Bohlmann J (2002) Terpene synthases and the mediation of plant–insect ecological interactions by terpenoids: a mini-review. In: Cronk QCB, Whitton J, Ree RH, Taylor IEP (eds) International workshop on plant adaptation—molecular genetics and ecology. National Research Council Canada Vancouver, Canada, pp 70–81

    Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. Principles and practice. Freeman & Company, San Francisco

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co, New York

    Google Scholar 

  • Junker RR, Blüthgen N (2010) Floral scents repel facultative flower visitors, but attract obligate ones. Ann Bot 105:777–782

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaiser R (2011) Scent of the vanishing flora. Wiley, Weinheim

    Google Scholar 

  • Kloucek P, Polesny Z, Svobodova B, Vlkova E, Kokoska L (2005) Antibacterial screening of some Peruvian medicinal plants used in Calleria District. J Ethnopharmacol 99:309–312

    Article  CAS  PubMed  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Lersten NR, Curtis JD (1993) Subepidermal idioblasts in leaflets of Caesalpinia pulcherrima and Parkinsonia aculeata (Leguminosae, Caesalpinioideae). Bull Torrey Bot Club 120:319–326

    Article  Google Scholar 

  • Lersten NR, Curtis JD (1994) Leaf anatomy in Caesalpinia and Hoffmannseggia (Leguminosae, Caesalpinioideae) with emphasis on secretory structures. Plant Syst Evol 192:231–255

    Article  Google Scholar 

  • Lersten NR, Curtis JD (1996) Survey of leaf anatomy, especially secretory structures, of tribe Caesalpinieae (Leguminosae, Caesalpinioideae). Plant Syst Evol 200:21–39

    Article  Google Scholar 

  • Lersten NR, Curtis JD (1997) Anatomy and distribution of foliar idioblasts in Scrophularia and Verbascum (Scrophulariaceae). Am J Bot 84:1638–1645

    Article  CAS  PubMed  Google Scholar 

  • Lersten NR, Horner HT (2008) Subepidermal idioblasts and crystal macropattern in leaves of Ticodendron (Ticodendraceae). Plant Syst Evol 276:255–260

    Article  Google Scholar 

  • Lewis GP (2005) Tribe Caesalpinieae. In: Lewis G, Schrire B, Mackinder B, Lock M (eds) Legumes of the world. Royal Botanic Gardens, Kew, London, pp 127–161

    Google Scholar 

  • Lock O (1994) Investigación fitoquímica. Métodos en el estudio de productos naturales. Fondo Editorial PUCP, Lima

    Google Scholar 

  • López A, Oré R, Miranda C, Trabucco J, Orihuela D, Linares J, Villafani Y, Ríos S, Siles M (2011) Capacidad antioxidante de poblaciones silvestres de “tara” (Caesalpinia spinosa) de las localidades de Picoy y Santa Fe (Provincia de Tarma, departamento de Junín). Sci Agropecu 2:25–29

    Google Scholar 

  • Miyazawa M, Nagata T, Nakahashi H, Takahashi T (2012) Characteristic odor components of essential oil from Caesalpinia decapetala. J Essent Oil Res 24:441–446

    Article  CAS  Google Scholar 

  • Mollenhauer HH (1964) Plastic embedding mixtures for use in electron microscopy. Stain Technol 9:111–114

    Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–374

    Article  Google Scholar 

  • Pawar CR, Kadtan RB, Gaikwad AA, Kadtan DB (2011) Pharmacognostical and physico-chemical standardization of leaves of Caesalpinia pulcherrima. Int J Res Pharm Chem 1:998–1002

    Google Scholar 

  • Pino JA, Marbot R, Payo A, Chao D, Herrera P (2006) Aromatic plants from western Cuba VII. Composition of the leaf oils of Psidium wrightii Krug et Urb., Lantana involucrata L., Cinnamomum montanum (Sw.) Berchtold et J. Persl. and Caesalpinia violacea (Mill.) Standley. J Essent Oil Res 18:170–174

    Article  CAS  Google Scholar 

  • Romero N, Fernández A, Robert P (2012) A polyphenol extract of tara pods (Caesalpinia spinosa) as a potential antioxidant in oils. Eur J Lipid Sci Technol 114:951–957

    Article  CAS  Google Scholar 

  • Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656

    Article  PubMed  Google Scholar 

  • Stpiczyńska M (2001) Osmophores of the fragrant orchid Gymnadenia conocsea L. (Orchidaceae). Acta Soc Bot Pol 70:91–96

    Article  Google Scholar 

  • Usman LA, Zubair MF, Olawore NO, Ashamu M, Ismaeel RO, Oladosu IA (2012) Chemical constituents of leaf essential oils of two varieties of Caesalpinia pulcherrima Linn growing in north central Nigeria. Elixir Org Chem 44:7085–7087

    Google Scholar 

  • Walker DB, Gysi J, Sternberg L, DeNiro MJ (1983) Direct respiration of lipids during heat production in the inflorescence of Philodendron selloum. Science 220:419–421

    Article  CAS  PubMed  Google Scholar 

  • Zindler-Frank E (1987) Calcium oxalate crystals in legumes. In: Stirton CH (ed) Advances in legume systematics. Royal Botanic Gardens, Kew, London, pp 279–316

    Google Scholar 

Download references

Acknowledgments

We thank Betty Millán (UNMSM) and the faculty of Biology (UNMSM) for allowing us to use her lab equipments and the Scanning Microcopy, respectively. C. M. thanks Fred Stauffer (CJBG) for providing the reagents for the NADI reaction. Martín E. Timaná de la Flor (PUCP) is kindly thanked by his help with the English revision and constructive comments. The investigation was supported by a research grant of San Marcos University (No 110701011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Martel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martel, C., Rojas, N., Marín, M. et al. Caesalpinia spinosa (Caesalpiniaceae) leaves: anatomy, histochemistry, and secondary metabolites. Braz. J. Bot 37, 167–174 (2014). https://doi.org/10.1007/s40415-014-0059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-014-0059-0

Keywords

Navigation