Skip to main content
Log in

Consequences of hyperthyroidism in male and female fertility: pathophysiology and current management

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Thyroid hormone acts on the oocytes, sperm and embryo during fertilization, implantation and placentation. Both hypothyroidism and hyperthyroidism may influence fertility. However, evidence of the association of hyperthyroidism with infertility is scarce and sometimes conflicting. Thyroid hormone influences human reproduction via a variety of mechanisms at both the central and the peripheral level. Infertility may occur in hyperthyroid men and women, but it is usually reversible upon restoration of euthyroidism. This review aims to summarize the available data on the association of hyperthyroidism and infertility in both men and women and to provide practical suggestions for the management of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Colicchia M, Campagnolo L, Baldini E et al (2014) Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update 20:884–904

    Article  PubMed  Google Scholar 

  2. Rovet JF (2014) The role of thyroid hormones for brain development and cognitive function. Endocr Dev 26:26–43

    Article  PubMed  Google Scholar 

  3. Krassas GE, Poppe K, Glinoer D (2010) Thyroid function and human reproductive health. Endocr Rev 31:702–755

    Article  CAS  PubMed  Google Scholar 

  4. De Groot L, Abalovich M, Alexander EK et al (2012) Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97:2543–2565

    Article  PubMed  Google Scholar 

  5. Lazarus J, Brown RS, Daumerie C et al (2014) 2014 European thyroid association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur Thyroid J 3:76–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Practice Committee of the American Society for Reproductive Medicine (2015) Subclinical hypothyroidism in the infertile female population: a guideline. Fertil Steril 104:545–553

    Article  Google Scholar 

  7. Poppe K, Glinoer D, Van SA et al (2002) Thyroid dysfunction and autoimmunity in infertile women. Thyroid 12:997–1001

    Article  PubMed  Google Scholar 

  8. Joshi JV, Bhandarkar SD, Chadha M et al (1993) Menstrual irregularities and lactation failure may precede thyroid dysfunction or goitre. J Postgrad Med 39:137–141

    CAS  PubMed  Google Scholar 

  9. Goldsmith RE, Sturgis SH, Lerman J et al (1952) The menstrual pattern in thyroid disease. J Clin Endocrinol Metab 12:846–855

    Article  CAS  PubMed  Google Scholar 

  10. Fedail JS, Zheng K, Wei Q et al (2014) Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats. Endocrine 46:594–604

    Article  CAS  PubMed  Google Scholar 

  11. Skjoldebrand Sparre L, Kollind M, Carlstrom K (2002) Ovarian ultrasound and ovarian and adrenal hormones before and after treatment for hyperthyroidism. Gynecol Obstet Invest 54:50–55

    Article  CAS  PubMed  Google Scholar 

  12. Mintziori G, Anagnostis P, Toulis KA et al (2012) Thyroid diseases and female reproduction. Minerva Med 103:47–62

    CAS  PubMed  Google Scholar 

  13. Weiss RV, Clapauch R (2014) Female infertility of endocrine origin. Arq Bras Endocrinol Metabol 58:144–152

    Article  PubMed  Google Scholar 

  14. Mouton S, Nighoghossian N, Berruyer M et al (2005) Hyperthyroidism and cerebral venous thrombosis. Eur Neurol 54:78–80

    Article  CAS  PubMed  Google Scholar 

  15. Huang C, Liang P, Diao L et al (2015) Thyroid autoimmunity is associated with decreased cytotoxicity T cells in women with repeated implantation failure. Int J Environ Res Public Health 12:10352–10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prummel MF, Wiersinga WM (2004) Thyroid autoimmunity and miscarriage. Eur J Endocrinol 150:751–755

    Article  CAS  PubMed  Google Scholar 

  17. Feldthusen AD, Pedersen PL, Larsen J et al (2015) Impaired fertility associated with subclinical hypothyroidism and thyroid autoimmunity: the Danish General Suburban Population Study. J Pregnancy 2015:132718

    Article  PubMed  PubMed Central  Google Scholar 

  18. Unuane D, Poppe K (2015) Female infertility: do we forget the thyroid? J Endocrinol Invest 38:571–574

    Article  CAS  PubMed  Google Scholar 

  19. Carp HJ, Selmi C, Shoenfeld Y (2012) The autoimmune bases of infertility and pregnancy loss. J Autoimmun 38:J266–J274

    Article  CAS  PubMed  Google Scholar 

  20. Janssen OE, Mehlmauer N, Hahn S et al (2004) High prevalence of autoimmune thyroiditis in patients with polycystic ovary syndrome. Eur J Endocrinol 150:363–369

    Article  CAS  PubMed  Google Scholar 

  21. Vissenberg R, Manders VD, Mastenbroek S et al (2015) Pathophysiological aspects of thyroid hormone disorders/thyroid peroxidase autoantibodies and reproduction. Hum Reprod Update 21:378–387

    Article  CAS  PubMed  Google Scholar 

  22. Ashkar FA, Semple E, Schmidt CH et al (2010) Thyroid hormone supplementation improves bovine embryo development in vitro. Hum Reprod 25:334–344

    Article  CAS  PubMed  Google Scholar 

  23. Aghajanova L, Lindeberg M, Carlsson IB et al (2009) Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod Biomed Online 18:337–347

    Article  CAS  PubMed  Google Scholar 

  24. Aghajanova L, Stavreus-Evers A, Lindeberg M et al (2011) Thyroid-stimulating hormone receptor and thyroid hormone receptors are involved in human endometrial physiology. Fertil Steril 95(230–237):237

    Google Scholar 

  25. Kong L, Wei Q, Fedail JS et al (2015) Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats. J Reprod Dev 61:219–227

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sera N, Yokoyama N, Abe Y et al (2000) Thyroid hormones influence serum leptin levels in patients with Graves’ disease during suppression of beta-adrenergic receptors. Thyroid 10:641–646

    Article  CAS  PubMed  Google Scholar 

  27. Duntas LH, Benvenga S (2015) Selenium: an element for life. Endocrine 48:756–775

    Article  CAS  PubMed  Google Scholar 

  28. Pieczyńska J, Grajeta H (2015) The role of selenium in human conception and pregnancy. J Trace Elem Med Biol 29:31–38

    Article  PubMed  Google Scholar 

  29. Meikle AW (2004) The interrelationships between thyroid dysfunction and hypogonadism in men and boys. Thyroid 14(Suppl 1):S17–S25

    Article  CAS  PubMed  Google Scholar 

  30. Corona G, Jannini EA, Vignozzi L et al (2012) The hormonal control of ejaculation. Nat Rev Urol 9:508–519

    Article  CAS  PubMed  Google Scholar 

  31. Corona G, Wu FC, Forti G et al (2012) Thyroid hormones and male sexual function. Int J Androl 35:668–679

    Article  CAS  PubMed  Google Scholar 

  32. Krassas GE, Pontikides N (2004) Male reproductive function in relation with thyroid alterations. Best Pract Res Clin Endocrinol Metab 18:183–195

    Article  CAS  PubMed  Google Scholar 

  33. Kumar A, Shekhar S, Dhole B (2014) Thyroid and male reproduction. Indian J Endocrinol Metab 18:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zamoner A, Barreto KP, Filho DW et al (2007) Hyperthyroidism in the developing rat testis is associated with oxidative stress and hyperphosphorylated vimentin accumulation. Mol Cell Endocrinol 267:116–126

    Article  CAS  PubMed  Google Scholar 

  35. Asker ME, Hassan WA, El-Kashlan AM (2015) Experimentally induced hyperthyroidism influences oxidant and antioxidant status and impairs male gonadal functions in adult rats. Andrologia 47:644–654

    Article  CAS  PubMed  Google Scholar 

  36. Bansal AK, Bilaspuri GS (2010) Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int 7:10

    Google Scholar 

  37. Krishnamoorthy G, Venkataraman P, Arunkumar A et al (2007) Ameliorative effect of vitamins (alpha-tocopherol and ascorbic acid) on PCB (Aroclor 1254) induced oxidative stress in rat epididymal sperm. Reprod Toxicol 23:239–245

    Article  CAS  PubMed  Google Scholar 

  38. Wertenbruch T, Willenberg HS, Sagert C et al (2007) Serum selenium levels in patients with remission and relapse of graves’ disease. Med Chem 3:281–284

    Article  CAS  PubMed  Google Scholar 

  39. Wu Q, Rayman MP, Lv H et al (2015) Low population selenium status is associated with increased prevalence of thyroid disease. J Clin Endocrinol Metab 100:4037–4047

    Article  CAS  PubMed  Google Scholar 

  40. Flohe L (2007) Selenium in mammalian spermiogenesis. Biol Chem 388:987–995

    Article  CAS  PubMed  Google Scholar 

  41. Olson GE, Winfrey VP, Nagdas SK et al (2007) Apolipoprotein receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 282:12290–12297

    Article  CAS  PubMed  Google Scholar 

  42. Ramos CF, Zamoner A (2014) Thyroid hormone and leptin in the testis. Front Endocrinol (Lausanne) 5:198

    Google Scholar 

  43. Lazarus JH (2012) Pre-conception counselling in Graves’ disease. Eur Thyroid J 1:24–29

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ceccarelli C, Canale D, Vitti P (2008) Radioactive iodine (131I) effects on male fertility. Curr Opin Urol 18:598–601

    Article  PubMed  Google Scholar 

  45. Mintziori G, Goulis DG, Toulis KA et al (2011) Thyroid function during ovarian stimulation: a systematic review. Fertil Steril 96:780–785

    Article  CAS  PubMed  Google Scholar 

  46. Mintziori G, Goulis DG (2014) TSH threshold for all women undergoing controlled ovarian stimulation. Endocr Pract 20:374

    Article  PubMed  Google Scholar 

  47. Ourique GM, Finamor IA, Saccol EM et al (2013) Resveratrol improves sperm motility, prevents lipid peroxidation and enhances antioxidant defences in the testes of hyperthyroid rats. Reprod Toxicol 37:31–39

    Article  CAS  PubMed  Google Scholar 

  48. Sahoo DK, Roy A, Chainy GB (2008) Protective effects of vitamin E and curcumin on l-thyroxine-induced rat testicular oxidative stress. Chem Biol Interact 176:121–128

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Goulis.

Ethics declarations

Conflict of interest

All authors have nothing to disclose.

Ethical approval

Not applicable (short review).

Informed consent

Not applicable (short review).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mintziori, G., Kita, M., Duntas, L. et al. Consequences of hyperthyroidism in male and female fertility: pathophysiology and current management. J Endocrinol Invest 39, 849–853 (2016). https://doi.org/10.1007/s40618-016-0452-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-016-0452-6

Keywords

Navigation