Skip to main content
Log in

A Single-Channel SSVEP-Based BCI with a Fuzzy Feature Threshold Algorithm in a Maze Game

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

A mobile robot control in a maze game using steady-state visually evoked potential (SSVEP)-based brain–computer interface (BCI) is developed to help the severely disabled. In order to correctively induce the SSVEP of subjects, four visual stimuli including “counterclockwise,” “clockwise,” “forward,” and “backward” are displayed on monitor and flickering at different frequencies. The spectral features of EEG are extracted by using fast Fourier transform to accurately represent the characteristics of SSVEP. A fuzzy feature threshold algorithm is proposed to track the power spectrum of EEG and automatically adjust the threshold of EEG spectrum to achieve a suitable performance and stability of a BCI system. In this study, the system accuracies were 86.58 and 85.54% for robot movement simulation test and real robot control, respectively. Then, it would be suitable for the severely disabled to control the mobile robot in a maze game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McFarland, D.J., Wolpaw, J.R.: Brain-computer interfaces for communication and control. Commun. ACM 54, 60–66 (2011)

    Article  Google Scholar 

  2. Shih, J.J., Krusienski, D.J., Wolpaw, J.R.: Brain-computer interfaces in medicine. Mayo Clin. Proc. 87, 268–279 (2012)

    Article  Google Scholar 

  3. Cecotti, H.: Spelling with non-invasive Brain—computer interfaces—current and future trends. J. Physiol. Paris 105, 106–114 (2011)

    Article  Google Scholar 

  4. Liu, Q., Chen, K., Ai, Q.S., Xie, S.Q.: Review: recent development of signal processing algorithms for SSVEP-based brain computer interfaces. J. Med. Biol. Eng. 34, 299–309 (2014)

    Article  Google Scholar 

  5. Zhu, D., Bieger, J., Garcia Molina, G., Aarts, R.M.: A survey of stimulation methods used in SSVEP-Based BCIs. Comput. Intell. Neurosci. (2010)

  6. Yeh, C.-L., Lee, P.-L., Chen, W.-M., Chang, C.-Y., Wu, Y.-T., Lan, G.-Y.: Improvement of classification accuracy in a phase-tagged steady-state visual evoked potential-based brain computer interface using multiclass support vector machine. BioMed. Eng. Online 12, 46 (2013)

    Article  Google Scholar 

  7. Jia, C., Gao, X., Hong, B., Gao, S.: Frequency and phase mixed coding in SSVEP-based brain–computer interface. IEEE Trans. Biomed. Eng. 58, 200–206 (2011)

    Article  Google Scholar 

  8. Widyotriatmo, A., Suprijanto, Andronicus, S.: A collaborative control of brain computer interface and robotic wheelchair. In: Control Conference (ASCC), 2015 10th Asian, pp. 1–6 (2015)

  9. Muller, S.M.T., Celeste, W.C., Bastos, T.F., Sarcinelli, M.: Brain-computer interface based on visual evoked potentials to command autonomous robotic wheelchair. J. Med. Biol. Eng. 30, 407–415 (2010)

    Article  Google Scholar 

  10. Punsawad, Y., Wongsawat,Y.: Hybrid SSVEP-motion visual stimulus based BCI system for intelligent wheelchair. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE, pp. 7416–7419 (2013)

  11. Yuanqing, L., Jiahui, P., Fei, W., Zhuliang, Y.: A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng. 60, 3156–3166 (2013)

    Article  Google Scholar 

  12. Chi Man, W., Qi, T., Nuno da Cruz, J., Feng, W.: A multi-channel SSVEP-based BCI for computer games with analogue control. In: 2015 IEEE international conference on computational intelligence and virtual environments for measurement systems and applications (CIVEMSA), pp. 1–6 (2015)

  13. Akhtar, A., Norton, J.J.S., Kasraie, M., Bretl, T.: Playing checkers with your mind: An interactive multiplayer hardware game platform for brain-computer interfaces. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, pp. 1650–1653 (2014)

  14. Parafita, R., Pires, G., Nunes, U., Castelo-Branco, M.: A spacecraft game controlled with a brain-computer interface using SSVEP with phase tagging. In: 2013 IEEE 2nd international conference on serious games and applications for health (SeGAH), pp. 1–6 (2013)

  15. van Vliet, M., Robben, A., Chumerin, N., Manyakov, N.V., Combaz, A., Van Hulle, M.M.: Designing a brain-computer interface controlled video-game using consumer grade EEG hardware. In: Biosignals and biorobotics conference (BRC), 2012 ISSNIP, pp. 1–6 (2012)

  16. Chumerin, N., Manyakov, N.V., van Vliet, M., Robben, A., Combaz, A., Van Hulle, M.: Steady-state visual evoked potential-based computer gaming on a consumer-grade EEG device. IEEE Trans. Comput. Intell. AI Games 5, 100–110 (2013)

    Article  Google Scholar 

  17. Muller-Putz, G.R., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55, 361–364 (2008)

    Article  Google Scholar 

  18. Kapeller, C., Hintermuller, C., Abu-Alqumsan, M., Pruckl, R., Peer, A., Guger, C.: A BCI using VEP for continuous control of a mobile robot. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE, pp. 5254–5257 (2013)

  19. Lixia, M., Fuchun, S.: Architecture and navigation strategy of BCI based semi-autonomous mobile robot. In: 2014 International conference on multisensor fusion and information integration for intelligent systems (MFI), pp. 1–6 (2014)

  20. Lopes, A.C., Pires, G., Nunes, U.: Assisted navigation for a brain-actuated intelligent wheelchair. Robot. Autonom. Syst. 61, 245–258 (2013)

    Article  Google Scholar 

  21. Muller, S.M.T., Bastos-Filho, T.F., Sarcinelli-Filho, M.: Using a SSVEP-BCI to command a robotic wheelchair. In: 2011 IEEE International Symposium on Industrial Electronics (ISIE), pp. 957–962 (2011)

  22. Diez, P.F., Mut, V.A., Laciar, E., Perona, E.M.A.: Mobile robot navigation with a self-paced brain-computer interface based on high-frequency SSVEP. Robotica 32, 695–709 (2014)

    Article  Google Scholar 

  23. Cavrini, F., Bianchi, L., Quitadamo, L.R., Saggio, G.: A fuzzy integral ensemble method in visual P300 brain-computer interface. Comput. Intell. Neurosci. 2016, 9 (2016)

    Article  Google Scholar 

  24. Lotte, F.: The use of fuzzy inference systems for classification in EEG-based brain-computer interfaces. In: 3rd International brain-computer interfaces workshop and training course, Graz (2006)

  25. Nguyen, T., Khosravi, A., Creighton, D., Nahavandi, S.: EEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems. Expert Syst. Appl. 42, 4370–4380 (2015)

    Article  Google Scholar 

  26. Nikolay, V.M., Nikolay, C., Arne, R., Adrien, C., van Marijn, V., Marc, M.V.H.: Sampled sinusoidal stimulation profile and multichannel fuzzy logic classification for monitor-based phase-coded SSVEP brain–computer interfacing. J. Neural Eng. 10, 036011 (2013)

    Article  Google Scholar 

  27. Martinez, P., Bakardjian, H., Cichocki, A.: Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm. Comput. Intell. Neurosci. (2007)

  28. Amiri, S., Rabbi, A., Azinfar, L., Fazel-Rezai, R.: A review of P300, SSVEP, and hybrid P300/SSVEP brain-computer interface systems. Brain Comput. Interface Syst. Recent Progress Future Prospects, 195–213 (2013)

  29. Diez, P.F., Mut, V.A., Avila Perona, E.M., Laciar Leber, E.: Asynchronous BCI control using high-frequency SSVEP. J. NeuroEng. Rehabil. 8, 39 (2011)

    Article  Google Scholar 

  30. Diez, P.F., Torres Müller, S.M., Mut, V.A., Laciar, E., Avila, E., Bastos-Filho, T.F., et al.: Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain–computer interface. Med. Eng. Phys. 35, 1155–1164 (2013)

    Article  Google Scholar 

  31. Chen, S.C., See, A.R., Chen, Y.J., Yeng, C.H., Liang, C.K.: The use of a brain computer interface remote control to navigate a recreational device. Math. Probl. Eng. (2013)

  32. Cecotti, H.: A self-paced and calibration-less SSVEP-based brain-computer interface speller. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 127–133 (2010)

    Article  Google Scholar 

  33. Cooley, J.W., Lewis, P.A.W., Welch, P.D.: Historical notes on the fast Fourier transform. IEEE Trans. Audio Electroacoust. 15, 76–79 (1967)

    Article  Google Scholar 

  34. Wu, C.-M., Luo, C.-H., Lin, S.-W.: Mouth-controlled text input device with sliding fuzzy algorithm for individuals with severe disabilities. Biomed. Eng.: Appl. Basis Commun. 22, 223–237 (2010)

    Google Scholar 

  35. Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. 26, 1182–1191 (1977)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the Ministry of Science and Technology of the Republic of China, Taiwan, for financially supporting this research under Contract MOST 105-2221-E-218-027, MOST 105-2221-E-218-015, and MOST 105-2221-E-168-021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Min Wu.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SC., Chen, YJ., Zaeni, I.A.E. et al. A Single-Channel SSVEP-Based BCI with a Fuzzy Feature Threshold Algorithm in a Maze Game. Int. J. Fuzzy Syst. 19, 553–565 (2017). https://doi.org/10.1007/s40815-016-0289-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0289-3

Keywords

Navigation