Skip to main content

Advertisement

Log in

An Approach Using Entropy and Supervised Classifications to Disaggregate Agricultural Data at a Local Level

  • Original Article
  • Published:
Journal of Quantitative Economics Aims and scope Submit manuscript

Abstract

Changes in the Common Agricultural Policy (CAP) had several consequences on land-use and on the environment. This calls for detailed disaggregated agricultural data with precise geographical references. To tackle such problems data disaggregation processes are needed and a series of studies are being carried out at international level, which still have not taken the utmost advantage of remote sensing technologies by combining them with mathematical programming methods, namely entropy. Therefore, the objective of this article was to provide an approach to disaggregate agricultural data at the local level, taking advantage of the existent up-to-date satellite imagery and an entropy approach for manage different sets of data. The results were compared with other approaches and showed to be coherent, and may be improved further with the inclusion of other information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Source Model results)

Fig. 4

Source Model results)

Fig. 5

Source Model results)

Fig. 6

Source Model results)

Similar content being viewed by others

References

  • Britz, W. 2008. EU-wide spatial down-scaling of results of regional economic models to analyze environmental impacts. Paper presented In 107th European Association of Agricultural Economists (EAAE) Seminar” Modelling of Agricultural and Rural Development Policies. Sevilla, Spain, pp. 78–87 (January 29th–February 1st, 2008).

  • Castela, E., Villardón, M.P. 2010. Ecological inference for the characterization of electoral Turnout: the Portuguese case. Spatial and organizational dynamics. Quantitative Methods Applied to Social Sciences. Discussion papers No. 3, pp. 6-25

  • Chakir, R. 2009. Spatial downscaling of agricultural land-use data: an econometric approach using cross–entropy. Land Economics. 85 (2): 238–251.

    Article  Google Scholar 

  • Congalton, R.G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37 (1): 35–46.

    Article  Google Scholar 

  • Congedo, L. 2015. Semi-automatic classification plugin documentation release 4.8.0.1. https://semiautomaticclassificationmanual-v4.readthedocs.org/en/latest/. Accessed 15 Feb 2016.

  • Demirkesen, A.C., F. Evrendilek, S. Berberoglu, and S. Kilic. 2007. Coastal flood risk analysis using Landsat-7 ETM+ imagery and SRTM DEM: A case study of Izmir, Turkey. Environmental Monitoring and Assessment 131 (1): 293–300.

    Article  Google Scholar 

  • EUROSTAT. 2013. LUCAS 2012 (Land-Use/Cover Area Frame Survey-Technical Reference Document). EUROSTAT. https://ec.europa.eu/eurostat/documents/205002/208012/LUCAS2012_C1-InstructionsRevised_20130110a.pdf.

  • Fragoso, R., M.B. Martins, and M.R. Lucas. 2008. Generate disaggregated soil allocation data using a minimum cross entropy model. WSEAS Transaction on Environment and Development. 9 (4): 756–766.

    Google Scholar 

  • Gadiga, B.L., Adesina, F.A., Orimoogunje, I.O.O. 2013. Spatial-temporal analysis of vegetation dynamics in the semi arid belt of Nigeria. Global Journal of Human-Social Science 13(7).

  • Graciani, S.D., and E.M.L.M. Novo. 2003. Determinação da cobertura de macrófitas aquáticas em reservatórios tropicais. Anais do XI Simpósio Brasileiro de Sensoriamento Remoto 2003: 2509–2516.

    Google Scholar 

  • Golan, A., G. Judge, and D. Miller. 1996. Maximum entropy econometrics: robust estimation with limited data. NewYork: Wiley.

    Google Scholar 

  • Good, I. 1963. Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables. The Annals of Mathematical Statistics 34 (3): 911–934.

    Article  Google Scholar 

  • Howitt, R., and A. Reynaud. 2003. Spatial disaggregation of agricultural production data using maximum entropy. European Review of Agricultural Economics 30 (3): 359–387.

    Article  Google Scholar 

  • INE-Instituto Nacional de Estatística. 2011. Recenseamento geral da agricultura de 2009. Lisbon: INE.

    Google Scholar 

  • INE-Instituto Nacional de Estatística. 2014. Inquérito à Estrutura das Explorações Agrícolas 2013. Lisbon: INE.

    Google Scholar 

  • Jaynes, E.T. 1957. Information theory and statistical methods I. Physics Review. 106: 620–630.

    Article  Google Scholar 

  • Jeon, Y.-J., Choi, J.-G., and Kim, J.-I. 2004. A study on supervised classification of remote sensing satellite image by bayesian algorithm using average fuzzy intracluster distance. In Combinatorial image analysis. Berlin, Heidelberg: Springer, pp. 597–606

    Google Scholar 

  • Kempen, M., T. Heckelei, W. Britz, A. Leip, R. Koeble, and G. Marchi. 2005. Computation of a European agricultural land-use map-statistical approach and validation. Discussion paper. Bonn: Institute for Food and Resource Economics.

    Google Scholar 

  • Lu, D., and Q. Weng. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28 (5): 823–870. https://doi.org/10.1080/01431160600746456.

    Article  Google Scholar 

  • Martins, M.B., R. Fragoso, and A. Xavier. 2011. Spatial disaggregation of agricultural data in Castelo de Vide, Alentejo, Portugal: an approach based on maximum entropy. J.P. Jounal of Biostatistics 5 (1): 1–16.

    Google Scholar 

  • Martins, N. M. N. 2012. Utilização de imagens de satélite de alta resolução para a extracção de elementos em ambiente urbano, Master dissertation in Geografic engenniring, University of Lisbon.

  • Rajaraman, A., J. Leskovec, and J. Ullman. 2010. Mining of massive datasets. Cambridge, Stanford: Cambridge University Press, Stanford University.

    Google Scholar 

  • Shannon, C.E. 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379–423.

    Article  Google Scholar 

  • StatSoft, Inc. 2013. Electronic Statistics Textbook. Tulsa, OK: StatSoft. http://www.statsoft.com/textbook/.

  • Tan, J., P. Yang, Z. Liu, W. Wu, L. Zhang, Z. Li, and Z. Li. 2014. Spatio-temporal dynamics of maize cropping system in Northeast China between 1980 and 2010 by using spatial production allocation model. Journal of Geographical Sciences 24 (3): 397–410.

    Article  Google Scholar 

  • Thu, P.M., and J. Populus. 2007. Status and changes of mangrove forest in Mekong delta: case study in Tra Vinh, Vietnam. Estuarine, Coastal and Shelf Science 71 (1): 98–109.

    Article  Google Scholar 

  • USGS-United States Geological Survey. 2015. Lansat project factsheet: Landsat—earth observation satellites. http://pubs.usgs.gov/fs/2015/3081/fs20153081.pdf. Accessed 16 March 2016.

  • You, L., and S. Wood. 2006. An entropy approach to spatial disaggregation of agricultural production. Agricultural Systems 90 (2006): 29–347.

    Google Scholar 

  • You, L., S. Wood, and U. Wood-Sichra. 2009. Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agricultural Systems 99 (2–3): 126–140.

    Article  Google Scholar 

  • You, L., S. Wood, U. Wood-Sichra, and W. Wu. 2014. Generating global crop distribution maps: from census to grid. Agricultural Systems 127: 53–60.

    Article  Google Scholar 

  • Xavier, A., Martins, M. B., Fragoso, R. 2010. Combined disaggregation of agricultural land-uses, livestock numbers and crops’ production: an entropy approach. In Advances in mathematical and computational methods, proceedings of the 12th WSEAS International Conference on Mathematical and computational methods in science and engineering. Faro: WSEAS.

  • Xavier, A., Martins, M. B., Fragoso. R. 2011. A mininum cross entropy model to generate disaggregated data at the local level. Paper presented at the 122nd European Association of Agricultural Economists (EAAE) Seminar “Evidence-based agricultural and rural policy making: Methodological and empirical challenges of policy evaluation”, Ancona (17–18 February 2011).

  • Xavier, A., and M.B. Costa Freitas. 2014. Recent dynamics and trends of Portuguese agriculture—a Biplot analysis. New Medit. 13 (4): 67–74.

    Google Scholar 

  • Xavier, A., Freitas, M. B., Socorro Rosário, M., Fragoso, R. 2015. Disaggregating statistical data at field level: na entropy approach, 53 Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural, 26 a 29 de julho de 2015, UFPB João Pessoa-PB.

Download references

Acknowledgements

The authors are pleased to acknowledge financial support from Fundação para a Ciência e a Tecnologia (grant UID/ECO/04007/2013) and FEDER/COMPETE (POCI-01-0145-FEDER-007659)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Fragoso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, A., Fragoso, R., de Belém Costa Freitas, M. et al. An Approach Using Entropy and Supervised Classifications to Disaggregate Agricultural Data at a Local Level. J. Quant. Econ. 17, 763–779 (2019). https://doi.org/10.1007/s40953-018-0143-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40953-018-0143-6

Keywords

Navigation