Skip to main content
Log in

Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Excessive copper (as Cu(II)) in drinking water—in place through mining, farming, manufacturing operations, and municipal or industrial wastewater releases—can be a threat to human health and ecosystem wellbeing. Some sources of drinking water are remote; hence, the sensitive, selective, and portable detection of contaminated copper in drinking water sources is of great importance. Through this work, a portable fabric amperometric nanosensor has been devised via a simple dip-coating method, which is able to rapidly, sensitively, and selectively detect Cu(II) ions in a range of 0.65 to 39 ppm in real time. The prepared Cu(II) nanosensor, which operates under a low voltage, consists of three layers: electrospun nylon-6 nanofibers, multi-walled carbon nanotubes, and 2,2′:5′,2″-terthiophene molecules. Potential interfering metal ions, including Cd(II), Fe(II), Pb(II), Hg(II), and Ag(I) ions, have no significant influence on the response of the Cu(II) nanosensor. This fabric sensor—that is able to be placed in your pocket and carried about—is more portable than current technologies, while being able to detect Cu(II) on the same level necessary for potable water. We anticipate our nanosensor to be a starting point for more sophisticated and comprehensive heavy metal assay. Furthermore, this nanosensor will aid in on-site detection of Cu(II) in potential drinking water sources, lending itself well to third world and remote detection.

A polymer nanocomposite sensor has been developed for the sensitive and selective detection of copper in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. f. D. C. a. Prevention. Copper and drinking water from private wells. cdc.gov. https://www.cdc.gov/healthywater/drinking/private/wells/disease/copper.html. Accessed 2017

  2. Mukherjee S, Talukder S, Chowdhury S, Mal P, Stoeckli-Evans H (2016) Synthesis, structure and sensing behavior of hydrazone based chromogenic chemosensors for Cu2+ in aqueous environment. Inorg Chim Acta 450:216–224. https://doi.org/10.1016/j.ica.2016.05.049

    Article  CAS  Google Scholar 

  3. Lv L, Diao Q (May 15 2017) A highly selective and sensitive rhodamine-derived fluorescent probe for detection of Cu2+. Spectrochim Acta A Mol Biomol Spectrosc 179:221–226. https://doi.org/10.1016/j.saa.2017.02.053

    Article  CAS  Google Scholar 

  4. Wang S et al (2017) The triple roles of glutathione for a DNA-cleaving DNAzyme and development of a fluorescent glutathione/Cu2+-dependent DNAzyme sensor for detection of Cu2+ in drinking water. ACS Sens 2(3):364–370. https://doi.org/10.1021/acssensors.6b00667

    Article  CAS  Google Scholar 

  5. Zong L, Song Y, Li Q, Li Z (2016) A “turn-on” fluorescence probe towards copper ions based on core-substituted naphthalene diimide. Sensors Actuators B Chem 226:239–244. https://doi.org/10.1016/j.snb.2015.11.089

    Article  CAS  Google Scholar 

  6. He Y et al (2016) Phosphatidylserine-functionalized Fe3O4@SiO2 nanoparticles combined with enzyme-encapsulated liposomes for the visual detection of Cu2+. J Mater Chem B 4(4):752–759. https://doi.org/10.1039/c5tb01926e

    Article  CAS  Google Scholar 

  7. Gedda G, Lee C-Y, Lin Y-C, Wu H-F (2016) Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sensors Actuators B Chem 224:396–403. https://doi.org/10.1016/j.snb.2015.09.065

    Article  CAS  Google Scholar 

  8. Su Y et al (2016) Facile preparation of fluorescent polydihydroxyphenylalanine nanoparticles for label-free detection of copper ions. Sensors Actuators B Chem 225:334–339. https://doi.org/10.1016/j.snb.2015.11.067

    Article  CAS  Google Scholar 

  9. Xiong J-J, Huang P-C, Zhou X, Wu F-Y (2016) A highly selective and sensitive “turn-on” fluorescent probe of Cu2+ by p-dimethylaminobenzamide-based derivative and its bioimaging in living cells. Sensors Actuators B Chem 232:673–679. https://doi.org/10.1016/j.snb.2016.04.004

    Article  CAS  Google Scholar 

  10. Gao W et al (2016) Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens 1(7):866–874. https://doi.org/10.1021/acssensors.6b00287

    Article  CAS  Google Scholar 

  11. Huang J, Zheng Q, Kim JK, Li Z (2013) A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosens Bioelectron 43:379–383. https://doi.org/10.1016/j.bios.2012.12.056

    Article  CAS  Google Scholar 

  12. Pihlasalo S, Perez IM, Hollo N, Hokkanen E, Pahikkala T, Harma H (2016) Luminometric label array for quantification and identification of metal ions. Anal Chem 88(10):5271–5280. https://doi.org/10.1021/acs.analchem.6b00453

    Article  CAS  Google Scholar 

  13. Kang JH, Lee SY, Ahn HM, Kim C (2016) Sequential detection of copper(II) and cyanide by a simple colorimetric chemosensor. Inorg Chem Commun 74:62–65. https://doi.org/10.1016/j.inoche.2016.10.039

    Article  CAS  Google Scholar 

  14. Rezaeian K, Khanmohammadi H, Arab V (Dec 05 2015) Rational design of a novel azoimine appended maleonitrile-based Salen chemosensor for rapid naked-eye detection of copper(II) ion in aqueous media. Spectrochim Acta A Mol Biomol Spectrosc 151:848–853. https://doi.org/10.1016/j.saa.2015.06.127

    Article  CAS  Google Scholar 

  15. Zhang H et al (2015) Coupling a novel spiro-rhodamine B lactam derivative to Fe3O4 nanoparticles for visual detection of free copper ions with high sensitivity and specificity. RSC Adv 5(57):45847–45852. https://doi.org/10.1039/c5ra04272k

    Article  CAS  Google Scholar 

  16. Wujcik EK, Duirk SE, Chase GG, Monty CN (2016) A visible colorimetric sensor based on nanoporous polypropylene fiber membranes for the determination of trihalomethanes in treated drinking water. Sensors Actuators B Chem 223:1–8. https://doi.org/10.1016/j.snb.2015.09.004

    Article  CAS  Google Scholar 

  17. Zhang B, Diao Q, Ma P, Liu X, Song D, Wang X (2016) A sensitive fluorescent probe for Cu2+ based on rhodamine B derivatives and its application to drinking water examination and living cells imaging. Sensors Actuators B Chem 225:579–585. https://doi.org/10.1016/j.snb.2015.11.069

    Article  CAS  Google Scholar 

  18. Huang P-C, Fang H, Xiong J-J, Wu F-Y (2017) Ultrasensitive turn-on fluorescence detection of Cu2+ based on p-dimethylaminobenzamide derivative and the application to cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 173:264–269. https://doi.org/10.1016/j.saa.2016.09.011

    Article  CAS  Google Scholar 

  19. Shanmugaraj K, Ilanchelian M (2016) A “turn-off” fluorescent sensor for the selective and sensitive detection of copper(II) ions using lysozyme stabilized gold nanoclusters. RSC Adv 6(59):54518–54524. https://doi.org/10.1039/c6ra08325k

    Article  CAS  Google Scholar 

  20. Khan B et al (2016) Synthesis, characterization and Cu2+ triggered selective fluorescence quenching of bis-calix[4]arene tetra-triazole macrocycle. J Hazard Mater 309:97–106. https://doi.org/10.1016/j.jhazmat.2016.01.074

    Article  CAS  Google Scholar 

  21. Vopalenska I, Vachova L, Palkova Z (2015) New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells. Biosens Bioelectron 72:160–167. https://doi.org/10.1016/j.bios.2015.05.006

    Article  CAS  Google Scholar 

  22. Wang R, Wang W, Ren H, Chae J (2014) Detection of copper ions in drinking water using the competitive adsorption of proteins. Biosens Bioelectron 57:179–185. https://doi.org/10.1016/j.bios.2014.01.056

    Article  CAS  Google Scholar 

  23. Yin K, Wu Y, Wang S, Chen L (2016) A sensitive fluorescent biosensor for the detection of copper ion inspired by biological recognition element pyoverdine. Sensors Actuators B Chem 232:257–263. https://doi.org/10.1016/j.snb.2016.03.128

    Article  CAS  Google Scholar 

  24. Zhang W et al (2012) Self-assembled multilayer of alkyl graphene oxide for highly selective detection of copper(II) based on anodic stripping voltammetry. J Mater Chem 22(42):22631–22636. https://doi.org/10.1039/c2jm34795d

    Article  CAS  Google Scholar 

  25. Sun Y-F, Zhao L-J, Jiang T-J, Li S-S, Yang M, Huang X-J (2016) Sensitive and selective electrochemical detection of heavy metal ions using amino-functionalized carbon microspheres. J Electroanal Chem 760:143–150. https://doi.org/10.1016/j.jelechem.2015.11.028

    Article  CAS  Google Scholar 

  26. Li W-J, Yao X-Z, Guo Z, Liu J-H, Huang X-J (2015) Fe3O4 with novel nanoplate-stacked structure: surfactant-free hydrothermal synthesis and application in detection of heavy metal ions. J Electroanal Chem 749:75–82. https://doi.org/10.1016/j.jelechem.2015.04.038

    Article  CAS  Google Scholar 

  27. Yuan S, Peng D, Hu X, Gong J (2013) Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly. Anal Chim Acta 785:34–42. https://doi.org/10.1016/j.aca.2013.04.050

    Article  CAS  Google Scholar 

  28. Xiong S, Ye S, Hu X, Xie F (2016) Electrochemical detection of ultra-trace Cu(II) and interaction mechanism analysis between amine-groups functionalized CoFe2O4/reduced graphene oxide composites and metal ion. Electrochim Acta 217:24–33. https://doi.org/10.1016/j.electacta.2016.09.060

    Article  CAS  Google Scholar 

  29. Wang S, Wang Y, Zhou L, Li J, Wang S, Liu H (2014) Fabrication of an effective electrochemical platform based on graphene and AuNPs for high sensitive detection of trace Cu2+. Electrochim Acta 132:7–14. https://doi.org/10.1016/j.electacta.2014.03.114

    Article  CAS  Google Scholar 

  30. Soleimani M, Afshar MG (2013) Potentiometric sensor for trace level analysis of copper based on carbon paste electrode modified with multi-walled carbon nanotubes. Int J Electrochem Sci 8:8719–8729

    CAS  Google Scholar 

  31. Baig U, Khan AA (2015) Polyurethane-based cation exchange composite membranes: preparation, characterization and its application in development of ion-selective electrode for detection of copper(II). J Ind Eng Chem 29:392–399. https://doi.org/10.1016/j.jiec.2014.12.045

    Article  CAS  Google Scholar 

  32. Ali TA, Eldidamony AM, Mohamed GG, Elatfy DM (2014) Construction of chemically modified electrode for the selective determination of copper(II) ions in polluted water samples based on new β-cyclodextrine and 1,4-bis(6-bromohexyloxy)benzene ionophores. Int J Electrochem Sci 9:2420–2434

    Google Scholar 

  33. Mahajan RK, Sood P (2007) Novel copper(II)-selective electrode based on 2,2′:5′,2″-terthiophene in PVC matrix. Int J Electrochem Sci 2:832–847

    CAS  Google Scholar 

  34. Wujcik EK, Blasdel NJ, Trowbridge D, Monty CN (2013) Ion sensor for the quantification of sodium in sweat samples. IEEE Sensors J 13(9):3430–3436. https://doi.org/10.1109/jsen.2013.2257168

    Article  CAS  Google Scholar 

  35. Lala NL, Thavasi V, Ramakrishna S (2009) Preparation of surface adsorbed and impregnated multi-walled carbon nanotube/nylon-6 nanofiber composites and investigation of their gas sensing ability. Sensors 9(1):86–101. https://doi.org/10.3390/s90100086

    Article  CAS  Google Scholar 

  36. Monty CN, Wujcik EK, Blasdel NJ (2017) Flexible electrode for detecting changes in temperature, humidity, and sodium ion concentration in sweat. USA Patent US 9,603,560 B2 Patent Appl. 61/590,839

  37. El-Newehy MH, Al-Deyab SS, Kenawy E-R, Abdel-Megeed A (2011) Nanospider technology for the production of nylon-6 nanofibers for biomedical applications. J Nanomater 2011:1–8. https://doi.org/10.1155/2011/626589

    Article  CAS  Google Scholar 

  38. Mahajan A, Kingon A, Kukovecz Á, Konya Z, Vilarinho PM (2013) Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Mater Lett 90:165–168

    Article  CAS  Google Scholar 

  39. Zhang Q et al (2002) Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 66(16):165440

    Article  CAS  Google Scholar 

  40. Chen G-X, Kim H-S, Park BH, Yoon J-S (2006) Multi-walled carbon nanotubes reinforced nylon 6 composites. Polymer 47(13):4760–4767

    Article  CAS  Google Scholar 

  41. Choi J, Park DW, Shim SE (2011) Chemical vapour sensing behaviors of multi-walled carbon nanotube adsorbed electrospun nylon 6,6 nanofibers. Macromol Res 19(9):980–983. https://doi.org/10.1007/s13233-011-0905-x

    Article  CAS  Google Scholar 

  42. Yin B, Jiang C, Wang Y, La M, Liu P, Deng W (2010) Synthesis and electrochromic properties of oligothiophene derivatives. Synth Met 160(5–6):432–435. https://doi.org/10.1016/j.synthmet.2009.11.025

    Article  CAS  Google Scholar 

  43. Generali G, Capelli R, Toffanin S, Facchetti A, Muccini M (2010) Ambipolar field-effect transistor based on α,ω-dihexylquaterthiophene and α,ω-diperfluoroquaterthiophene vertical heterojunction. Microelectron Reliab 50(9–11):1861–1865. https://doi.org/10.1016/j.microrel.2010.07.047

    Article  CAS  Google Scholar 

  44. Pappenfus TM et al (2002) A π-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor. J Am Chem Soc 124(16):4184–4185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The University of Alabama College of Engineering.

Funding

This work was financially supported by the Texas Hazardous Waste Research Center [THWRC].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan K. Wujcik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Yu, G., Wei, X. et al. Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. Adv Compos Hybrid Mater 2, 711–719 (2019). https://doi.org/10.1007/s42114-019-00122-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00122-7

Keywords

Navigation