Skip to main content

Advertisement

Log in

Advances in the UCHSat-1 Nanosatellite: Design and Simulation

  • Original Paper
  • Published:
Advances in Astronautics Science and Technology Aims and scope Submit manuscript

Abstract

In 2015, at the Image Processing Research Laboratory (INTI-Lab) of the Universidad de Ciencias y Humanidades, one proposed the INCA programme (Research Programme on Aerospace Sciences). As a part of this programme, the design of a nanosatellite was included. Although the progress was plodding, after 3 years one wants to show these advances. One of the main limitations to have access to space, especially for developing countries, is the high cost of missions. In this sense, in the present work, we propose the use of commercial electric, electronic and electromechanical (EEE) devices, these being more economical than those for military use. UCHSat-1 nanosatellite advances are mainly at the simulation level. It is a CubeSat of 3 units that can be simulated with the help of the beeApp tool of Open Cosmos. Likewise, the nanosatellite modules are being implemented as a function of Arduino. The obtained results show, at least in the first instance, the feasibility of the use of Arduino for the implementation of the different nanosatellite modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Roman-Gonzalez A, Vargas-Cuentas NI (2015) Aerospace technology in Peru. In: 66th International astronautical congress-IAC 2015. 2015

  2. Postigo Diez Canseco DE (2011) Diseño e implementación de un controlador de temperatura basado en el dispositivo Peltier para cámara ambiental en la prueba del satélite PUCPSAT-1

  3. Menéndez Quinto DA (2014) Diseño e implementación del sistema de estabilización en el espacio para el picosatélite PUCP-SAT-1

  4. Vilchez Lagos NE (2016) Diseño e implementación de un dispositivo de adquisición de imágenes para el PUCP-SAT1

  5. Montes Melgarejo R (2011) Diseño y manufactura de la estructura mecánica del primer nanosatélite peruano Chasqui I

  6. Espinoza Cárdenas A (2011) Diseño e implementación de un sistema de adquisición de imágenes para el nanosatélite Chasqui-I

  7. Quino Quispe G (2013) Diseño y construcción de un generador de vibraciones aleatorias para las pruebas del nanosatélite Chasqui I

  8. Rojas Paredes JK (2015) Diseño e implementación de un sistema de adqusición embebido para su uso en la determinación de actitud del nanosatélite del proyecto Chasqui I

  9. Jara Alegría EO (2012) Diseño, simulación e implementación del módulo de control central y monitoreo de información de nanosatélite de investigación Chasqui-I de la Universidad Nacional de Ingeniería

  10. Marca J et al (2016) Investigación Satelital–UAPSAT. Ciencia Desarrollo 19(1):7–23

    Article  Google Scholar 

  11. López Aramburu FM, Solis Tipian MA (2012) Proyecto de investigación satelital-UAPSAT

  12. Villena de La Cruz G (2014) Implementación de un sistema en tiempo real embebido en la tarjeta del subsistema Command and Data Handling para incrementar la eficiencia del pico-satélite UAPSAT-1 de la Universidad Alas Peruanas

  13. Roman-Gonzalez A, Vargas-Cuentas NI (2016) INCA program for developing a nanosatellite at the UCH. In: 67th International astronautical congress-IAC 2016. 2016

  14. Madeira H et al (2002) Experimental evaluation of a COTS system for space applications. In: Proceedings international conference on dependable systems and networks. IEEE, 2002

  15. Pignol M (2010) COTS-based applications in space avionics. In: Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association, 2010

  16. Estela J (2019) COTS and the NewSpace. Radiation effects on Integrated circuits and systems for space applications. Springer, Cham, pp 329–346

    Book  Google Scholar 

  17. Konstantinidis K (2010) CubeSats: a review. Democritus University of Thrace, Thrace

    Google Scholar 

  18. Romero-Alva V, Alvarado-Diaz W, Roman-Gonzalez A (2018) Design of a 3D printer and integrated supply system. In: 2018 IEEE XXV International conference on electronics, electrical engineering and computing (INTERCON). IEEE, 2018

Download references

Acknowledgements

The authors wish to thank Open Cosmos (https://www.open-cosmos.com/) for allowing the use of its beeApp tool. It was possible thanks to the agreement signed between Open Cosmos and the Universidad de Ciencias y Humanidades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avid Roman-Gonzalez.

Appendices

Appendix A: Details of 3 Passes Over the Ground Station of Panama

figure a
figure b
figure c

Appendix B: Details of 4 Passes Over the Ground Station of Santiago de Chile

figure d
figure e
figure f
figure g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roman-Gonzalez, A., Quiroz-Olivares, A.E. & Vargas-Cuentas, N.I. Advances in the UCHSat-1 Nanosatellite: Design and Simulation. Adv. Astronaut. Sci. Technol. 3, 65–74 (2020). https://doi.org/10.1007/s42423-020-00054-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42423-020-00054-1

Keywords

Navigation